
HePiLUT: Resource Efficient Heterogeneous
Pipelined CNN Accelerator for FPGAs

Rashed Al Amin
Institute for Embedded Systems

University of Siegen
Siegen, Germany

rashed.amin@uni-siegen.de

Md Shahi Amran Hossain
Institute for Embedded Systems

University of Siegen
Siegen, Germany

md.hossain@uni-siegen.de

Roman Obermaisser
Institute for Embedded Systems

University of Siegen
Siegen, Germany

roman.obermaisser@uni-siegen.de

Abstract—Field programmable gate arrays (FPGAs) have
gained recognition as a suitable platform for implementing
Convolutional Neural Network (CNN)-based algorithms due to
their favorable attributes, such as energy efficiency and parallel
computing capabilities. Nevertheless, deploying CNNs on
resource-constrained devices poses challenges due to the
substantial computational demands of CNNs and limited on-
chip hardware resources. A majority of prior research
predominantly relies on the limited block RAM (BRAM) for
storing CNN parameters, and costly digital signal processing
(DSP) blocks for executing multiply-accumulate (MAC)
operations. To address these constraints, this paper introduces
HePiLUT, a novel compiler designed to analyze the CNN
structure and parameters, and automatically generates a
heterogeneous pipelined CNN accelerator architecture by
utilizing Look-Up Table (LUT). In addition, a dataflow
controller in the pipelining architecture has been developed to
foster a resource-efficient and low-latency CNN accelerator for
FPGAs. HePiLUT leverages LUTs to store input image data and
execute MAC operations instead of DSP blocks. The efficacy of
the proposed CNN accelerator compiler has been evaluated on
the Xilinx ZCU102 FPGA platform utilizing the Visual
Geometry Group (VGG) architecture and CIFAR-10 dataset.
The findings underscore HePiLUT's capability, showcasing a
substantial reduction compared to state-of-the-art CNN
accelerator design. However, these substantial savings come at
a trade-off, as there is a 3% decrease in throughput
performance. The proposed HePiLUT significantly reduces the
FPGA resource utilization and automatic compiler solution in
CNN implementation, providing considerable support for
sustainable and energy-efficient computing systems.

Keywords—CNN accelerator, heterogenous pipelining,
FPGAs

I. INTRODUCTION

Deep Neural Networks (DNN), particularly CNN offer a
robust method for extracting abstract features from image
data, showcasing significant success in various computer
vision applications [1] due to their achieved accuracy like
humans [2]. CNNs typically comprise multiple layers
involving computationally intensive convolution operations
followed by classification layers, posing challenges for
achieving real-time performance even on the most advanced
computing platforms. However, this method demands
substantial network bandwidth and prolonged processing
periods, making it impractical for scenarios with stringent
real-time requirements. Consequently, contemporary edge AI
solutions frequently leverage FPGAs to implement and
execute machine learning algorithms. FPGAs exhibits a LUT-
based product term structure and superior parallel computing
capabilities, contributing to enhanced energy efficiency and
lower power consumption than alternatives like GPUs, CPUs,
or VPU systems. Despite these advantages, CNN accelerators
encounter limitations in memory bandwidth and capacity, a
direct result of the CNN algorithms' computation and the

memory-intensive nature, especially in resource-constrained
edge devices like FPGAs.

Two common challenges encountered during the
deployment of CNNs on FPGAs are related to computational
intensity and memory intensity [3]. Researchers have
proposed diverse CNN models and methodologies targeting
these issues in response. Techniques aiming to alleviate the
computational complexity of CNNs include sparse neural
networks [4], low-precision fixed-point quantization [5],
tensor decomposition [6], zero-transfer skipping methods [7],
weight pruning [8], binarized neural networks [9], depthwise
separable convolution [10], and the utilization of block
convolutions to reduce computational load [11].

In tandem with these innovations, architectural
innovations in memory management have been pursued, as
contemporary CNNs tend to be larger in scale and cannot
solely rely on on-chip memory for storage. Furthermore, novel
computing architectures, such as 'non-von Neumann'
paradigms [12], have been introduced, encompassing
processing-in-memory (PIM) [13], in-memory computing
(IMC) [14], near-data processing (NDP) [15], and compute-
in-BRAM [16] all aimed at mitigating data transfer
bottlenecks. Notably, LUT-based PIMs have arisen as a
promising solution to enhance processing speed [17]. Besides,
recent reports have also highlighted the effectiveness of LUT-
based neural network architectures [18, 19] and LUT-based
multiplier [20] for CNN applications.

Numerous methodologies have been explored to create
resource-efficient CNN accelerators. Regrettably, the FPGA
research community currently lacks a dedicated CNN
accelerator compiler for hardware implementation of CNNs,
which automatically generates a resource-efficient CNN
accelerator based on input neural network description files.
This paper introduces HePiLUT, a novel heterogeneous
pipelining technique based compiler aimed at mitigating
computational latency and resource consumption omitting the
need for data storage within memories and foregoing the
loading of complete image data. Evaluation of HePiLUT has
been conducted using the Xilinx ZCU102 FPGA board,
resulting in a performance of 129600 FPS for 32×32 pixel
RGB images while consuming significantly fewer resources
compared to the state-of-the-art CNN accelerator. The novel
contributions of this paper are outlined as follows:

1. HePiLUT introduces a novel CNN accelerator
compiler that generates a heterogeneous pipelined CNN
module based on the input CNN architecture. This
enhancement facilitates the orderly execution of parallel
instructions across all CNN layers and RGB channels.

2. HePiLUT optimizes CNN accelerator design layer
by layer, prioritizing resource efficiency and flexibility. By
using LUT-based MAC operations, it eliminates the need for

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

979-8-3503-5469-0/24/$31.00 ©2024 IEEE

external memory access, BRAM, and DSP, streamlining the
architecture for improved performance.

3. The performance evaluation of the acceleration
system generated by the proposed HePiLUT CNN accelerator
compiler has been conducted by comparing it with that of
state-of-the-art CNN accelerators.

II. RELATED WORK

Numerous techniques has been proposed to developed
efficient CNN accelerators, aiming to improve computational
power, reduce energy consumption, and optimize resource
utilization. This section gives an overview of prominent
architectures and methodologies reported in contemporary
literature to identify state-of-the-art CNN accelerators.

Ma et al. [21] reported on a scalable and modularized RTL
compilation of CNN for FPGA, which automatically
generates a set of modular and scalable computing primitives
capable of accelerating various deep learning algorithms.
However, this method does not consider any pipelining
architecture, resulting in comparatively lower throughput
compared to recent CNN accelerators such as FINN [9],
FixyFPGA [22], and HPIPE [23]. Several other CNN
accelerator designs, such as HPIPE [23] and Tomatto [24],
have been demonstrated and evaluated with 224×224 pixel
images, exhibiting very high throughput. However, these
designs also necessitated very high FPGA resources and did
not consider accuracy.

Umuroglu et al. [9] introduced FINN, a scalable and fast
CNN accelerator rooted in a binarized neural network
framework.. FINN exhibits impressive performance by
demonstrating a maximum classification speed of 21,906
images per second for an image size of 32×32 pixel images.
However, despite its strengths, BNNs encounter limitations in
leveraging the inherent FPGA architecture with high
precision.

Meng et al. [22] introduced FixyFPGA, a CNN accelerator
harnessing the element-wise sparsity technique for both VGG-
7 and MobileNet. This method encodes the trained CNN
network's weights directly into the hardware, utilizing them as
fixed operands for multiplication. This approach achieves
notable speeds by employing a fully parallel and pipelined
computation engine, reaching 134,000 FPS for 32×32 pixel
images.

The predominant focus of prior research has centered on
DSP-based MAC operations for computation and BRAM to
store the CNN weights, often resulting in high power
consumption and resource demands. Despite the high
performance offered by DSP blocks, their utilization may not
always be optimal considering overall performance and area

requirements, especially for large CNN applications due to
limitations such as quantity, flexibility, clock frequency
constraints, and restricted precision operations are associated
with DSP blocks. In contrast, HePiLUT introduces a LUT-
based heterogeneous pipeline architecture that leverages
FPGA's inherent features of low latency and minimal resource
utilization. Moreover, efficient control of the dataflow in the
proposed architecture helps in reducing the number of LUT
usage in FPGA fabric.

III. IMPLEMENTATION

 The HePiLUT CNN accelerator has been implemented
using a universal CNN framework based on the Very High-
Speed Integrated Circuit Hardware Description Language
(VHDL) for image classification tasks. Notably, HePiLUT is
designed to cater to various FPGAs, with a particular focus on
low-density FPGAs characterized by constrained memory and
computational resources. The reconfigurable nature of LUTs
enables support for different precision data, necessitating
fewer LUTs for operations with reduced precision. Fig. 1
illustrates the block diagram of the proposed HePiLUT
architecture. HePiLUT consists of three clusters: first, data
preprocessing through software tools such as TensorFlow or
PyTorch; second, the HePiLUT compiler, responsible for
generating the CNN accelerator hardware design from the
input neural network model; and third, synthesis and
verification of the generated accelerator using Vivado.

A. Data Pre-Processing

The data pre-processing module plays a pivotal role in
facilitating the interface between the CNN model and the
HePiLUT CNN accelerator compiler. In this integral step, the
input trained and quantized CNN model is required to
conform to the .tflite format, which serves as the standardized
medium for conveying crucial information pertaining to the
neural network description and the underlying feature maps of
the input image. Such meticulous inclusion ensures the
seamless integration of essential model parameters and input
data representations, facilitating the subsequent compilation
and optimization processes within the HePiLUT architecture.

B. HePiLUT CNN Accelerator Compiler

The network analyzer module within the HePiLUT CNN
accelerator compiler undertakes an initial investigation into
the input CNN layers and their associated parameters. This
analytical process encompasses the examination of critical
attributes such as kernel size, stride size, and filter number
across all convolutional and max-pooling layers.
Subsequently, the generated accelerator design and its
interconnections in the hardware are adjusted accordingly to
align with these parameters. Additionally, HePiLUT's
network analyzer evaluates user-defined computing pipeline

Fig. 1. Block diagram of the HePiLUT architecture.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

architectures, thereby generating and integrating
parameterized CNN modules. Moreover, the network
analyzer orchestrates the synchronization of the clock to
harmonize with the specifications of the FPGA device. In a
bid to conserve power during calculations and curtail
resource consumption, all parameters, including filters and
weights for each respective layer, have been extracted from
the trained model and converted into 8-bit fixed-point data.
Notably, the optimization achieved through the use of 8-bit
precision is deemed sufficient to maintain an acceptable
level of inference accuracy. Following this synchronization,
the parameters of the input CNN model, including weight
and bias, are extracted and stored in a VHDL array format
subsequent to conversion into binary 2's complement
representation. This meticulous process ensures the
computational engine configuration of the HePiLUT
compiler.

The core of the proposed HePiLUT CNN accelerator
compiler is its computation engine configuration,
comprising interconnected blocks organized in a cascade
configuration. These blocks demonstrate a heterogeneous
pipeline structure, serving all layers of the CNN and
handling the three RGB layers of the input image. The
HePiLUT pipeline structure involves three key
procedures—data load, data calculation, and data transfer to
optimize the accelerator's efficiency.

1. Data Load

To mitigate the reliance on the slower Off-chip
memory, a strategy has been employed wherein the input
feature maps undergo processing without being stored in
memory. The input image data is accessed from DDR
memory by HePiLUT computational engine through
Advanced eXtensible Interface (AXI) Stream. Loading of
the input image data occurs in a line-by-line fixed row and
column manner, populating the 3D array of input features
and kernels stored in the LUT memory. However, the
loading process for each CNN layer follows a specific
arrangement. For the initial convolution layer of the CNN,
HePiLUT loads only (K+1) lines of input data for a kernel
size of (K×K) and subsequently initiates the calculation of

the first convolution layer. The data loading process is
regulated by two control signals until the convolution
operation is completed. These two control signals
(READY and VALID) are utilized to regulate the data flow
from DDR to the HePiLUT computation engine. The
READY signal denotes the readiness status of the data
receiver layer, indicating whether it is prepared to receive
data. Conversely, the VALID signal signifies the validity
of the data being transmitted by the sender. Within the
processing system (PS), the ARM processor has the
responsibility of initializing the computation engine on
programmable logic (PL) by utilizing the control signal.
This process facilitates the dynamic configuration of
convolution layer parameters during runtime cycles. Upon
the completion of each convolutional operation, the newly
calculated data is transferred to the next layer. This data
transfer mechanism serves as the loading process for the
subsequent CNN layer. The new data supersedes the old
data that has already undergone processing. This iterative
use of the same memory location multiple times
contributes to HePiLUT's enhanced resource efficiency.

 The loading process within HePiLUT is visually
depicted in Fig. 2. In this representation, considering a
convolution kernel size of 5×5 and an input image size of
100×100 pixels. As the kernel size is 5×5, the loading of
image data progresses until the 6th line of the input image
data (illustrated in steps a, b, and c in Fig. 2). At this point,
the calculation process begins alongside with the data
loading process. Simultaneously, the calculated values are
transferred to the subsequent CNN layer (depicted in steps
c, d, e, and f in Fig. 2). In subsequent steps, the loading of
input data recommences from the 7th line of the input image
data, replacing the previously stored input data in the LUT
memory. This iterative process continues until the next
layer is filled with data equivalent to the kernel height. If the
subsequent layer obtains the necessary data to initiate the
calculation process, then all stages of data loading,
calculation, and transfer occur simultaneously. This ensures
efficient and continuous processing within the HePiLUT
accelerator data loading structure.

Fig. 2. Pipelining architecture of the proposed HePiLUT CNN accelerator.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

2. Calculation

In the HePiLUT architecture, the computational
engine takes charge of expediting the multiplication and
addition functions essential in CNN calculations,
employing a pipelined approach for parallelization. Each
multiplication and addition array is dedicated to computing
the pixels for an individual output feature map. The
initiation of the calculation operation begins promptly upon
the loading of sufficient input data. For instance, in the
scenario where an image comprises a total of 100×100 data
and a 5×5 kernel is applied, the convolution calculation
operation commences upon receiving the 6th row of input
image data. It doesn't wait for the complete loading of all
100×100 data to commence the convolutional calculation
operation. Once the convolutional calculation operation
concludes, the newly computed data is forwarded to the
next layer for subsequent processing in the following clock
cycle. This iterative process continues for each CNN layer
within the HePiLUT architecture, optimizing the
computation by starting calculations as soon as the required
input data is available rather than waiting for the complete
input data set to be loaded.

3. Data Transfer

 HePiLUT efficiently manages convolution kernels and
feature maps during convolutional operations, creating new
feature maps that act as input for subsequent layers. Within
a convolution operation, the key processes involve
multiplication and addition, both of which demand
substantial DSP (Digital Signal Processing) resources.
Additionally, the generated feature maps from these
operations necessitate considerable memory for buffering.
To optimize resource utilization, HePiLUT doesn't store
any output feature maps from any CNN layer. Instead, it
promptly transfers the calculated values directly into the
subsequent layer. This pipelined data transfer approach
significantly conserves resources, minimizing the need for

storing intermediary feature maps and ensuring a more
efficient utilization of memory and processing capabilities.

C. Design Synthesis

The HePiLUT CNN accelerator compiler orchestrates
convolutional operations utilizing a heterogeneous
pipelining architecture, generating a VHDL script for
hardware implementation. After completing the design
phase and establishing connections among layers, the
HePiLUT Intellectual Property (IP) core has been created.
To utilize this IP within a block design, it was packaged
with an AXI interface, which prevents direct
communication with the Processing System (PS) to retrieve
image data from DDR. To address this limitation, another
IP was specifically designed. This secondary IP receives
image data from the PS via Direct Memory Access (DMA)
using the AXI stream. It formats the received image data
according to the requirements of the HePiLUT IP and then
transmits the formatted data to the HePiLUT IP for further
processing. The computational resources required on the
FPGA are directly proportional to the MAC operation
involving input feature maps and kernels for producing
output feature maps. Fig. 3 represent the hardware
architecture of the HePiLUT. However, the RTL design
then synthesis and analysis utilizing synthesis tools such as
Xilinx Vivado. This process culminates in the generation
of a bitstream file, essential for high-performance FPGA or
ASIC implementations.

IV. RESULT AND DISCUSSION

 The evaluation process for the HePiLUT CNN
accelerator involved both simulation and hardware
implementation. The simulation phase was conducted using
a designed test bench for the image size of 32×32 pixels,
within the Xilinx Vivado environment. An experimental
dataset (CIFAR-10) has been constructed to facilitate the
simulation. This dataset comprised images with sizes of

Fig. 3. Hardware architecture of the HePiLUT.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

32×32 pixels, with pixel values ranging from 0 to 255. The
simulation results were validated by comparing the output
sequence with the sequence of input images. The successful
match between the result sequence and the input images
during simulation provided confidence in the functionality
of the HePiLUT accelerator. Following the simulation
phase, the HePiLUT accelerator underwent synthesis and
was deployed to the Xilinx ZCU102 FPGA board for
hardware evaluation. This step involved implementing the
accelerator on actual hardware to assess its performance and
validate its functionality in a real-world context. The
throughput has been measured through the Vivado
simulation analysis, resource utilization measured from the
Vivado synthesis report, and power measured by the Xilinx
Power Estimator (XPE). On the other hand, a run time
power measurement also has been conducted to validate the
power consumption of the HePiLUT.

A. Data Load Controller Result

 HePiLUT serves the purpose of addressing on-chip
memory limitations, particularly concerning the
deployment of larger networks, all without compromising
computational speed. For instance, consider a 32×32 image
being processed by HePiLUT. In a conventional
convolutional layer, the data loading process would
typically occupy a significant amount of memory: 32×32×3,
accounting for 3072 bytes. Instead of loading the entire
image data, HePiLUT strategically processes data in a more
efficient manner. For the same 32×32 image, HePiLUT
occupies only 32×4×3, which amounts to 384 bytes. This
represents a remarkable reduction, approximately 8x less
memory consumption compared to the conventional data
loading process.

B. FPGA Implementation Result

 The benchmarking results of HePiLUT with VGG-7
CNN model architectures on varied image sizes and
datasets showcase its noteworthy performance across
several metrics. For image classification on the CIFAR-10
dataset, HePiLUT takes 7716 ns. This translates to an
notable classification speed of 129600 FPS at the frequency
of 137MHz. In terms of resource utilization, HePiLUT
CNN accelerator demonstrates efficiency by utilizing only
4098 LUTs, leveraging its reliance on LUTs for data
processing. The power consumption of the HePiLUT is
significant, with a consistent consumption of around 3.5W.
This underscores the power efficiency of the HePiLUT
accelerator. Furthermore, HePiLUT exhibits high accuracy,
achieving a classification accuracy of 82.05% for CIFAR-
10 image classifications. These findings collectively

underscore the efficacy of the HePiLUT accelerator in terms
of speed, resource efficiency, and accuracy.

C. Comparison with State-of-the-Art CNN Accelerator

 Comparing HePiLUT with other top-notch FPGA-based
CNN accelerators reveals its distinct advantages in various
performance aspects, such as operating frequency, power
consumption, and throughput. Table 1 represents the
results of HePiLUT with state-of-the-art CNN accelerator
for the 32×32 RGB image classifications and serves as a
clear demonstration of HePiLUT's notable efficiency on
image classification tasks. The comparative analysis
showcases HePiLUT's competitive edge, likely
demonstrating the ability of working low (137MHz)
frequency, reduced latencies, higher throughputs, or a
combination of these factors, illustrating its prominence
among FPGA-based CNN accelerators. Its efficient
utilization of LUTs for CNN parameter embedding stands
out as a distinct advantage, paving the way for enhanced
performance metrics compared to its counterparts in the
field. This unique approach underscores HePiLUT's
resource optimization strategy and its ability to operate
efficiently with minimal hardware resources.

 In the experimental use case of 32×32 pixel images,
FixyFPGA demonstrates higher throughput of 134000 FPS
the cost of significantly higher power consumption and
higher resource utilization. In contrast, HePiLUT
maintaining competitive throughput of 129600 FPS with
higher precision. However, HePiLUT demonstrates notable
advantages in resource utilization efficiency, with minimal
BRAM and DSP utilization compared to the other CNN
accelerators for 32×32 RGB image classification. Fig. 4
illustrates the performance evaluation of the proposed
HePiLUT CNN accelerator in comparison to FixyFPGA,
chosen due to its representation of maximum throughput in
contemporary CNN accelerator designs. The
comprehensive analysis positions HePiLUT as an
competitive solution for CNN acceleration endeavors,
characterized by substantial reductions in resource
utilization (98% LUT, 99% DSP, and 100% BRAM),
alongside energy-efficient operation, manifesting in a 72%
reduction in power consumption. However, this
enhancement comes with a marginal trade-off, with a
3%mreduction in throughput. Besides, HePiLUT maintains
its emphasis on achieving maximum throughput with
minimal resource consumption, resulting in a lower
operating frequency. This strategic approach ensures that
even resource-constrained FPGA devices can effectively
leverage the benefits of the HePiLUT accelerator.

TABLE I. EVALUATION OF HEPILUT WITH STATE-OF-THE-ART CNN ACCELEARATOR FOR THE 32×32 RGB IMAGE CLASSIFICATIONS.

Author Kim et. al [26] Zhao et. al [27] FINN [9] FixyFPGA [22] HePiLUT

CNN Model Resnet BNN BNN VGG-7 VGG-7

FPGA PYNQ-Z1 XC7Z020 ZC706 Stratix 10 ZCU 102

BRAMs 523 94 186 290 0

DSPs 167 3 - 360 1

LUTs 15200 46900 46253 814980 4098

Precision 16-bit 2-bit 1-bit 4-bit 8-bit

Frequency (MHz) 50 143 200 137.29 137

Throughput (FPS) 9.17 168 21906 134000 129600

Power (W) 1.44 4.7 25 22.03 3.45

Efficiency (FPS/W) 6.36 35.74 876 6008 37565

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

Fig. 4. Performance evaluation of the HePiLUT CNN accelerator.

V. CONCLUSION AND FUTURE WORK

The paper introduces HePiLUT, a distinctive LUT-
based heterogeneous pipelined CNN accelerator
architecture designed for FPGAs. By implementing
representative VGG CNN algorithms on the Xilinx ZCU102
FPGA board, the study showcases outstanding performance
metrics, reaching a peak performance of 129600 FPS for
32×32 pixel RGB images. Notably, this achievements are
accomplished while maintaining minimal resource
utilization and low power consumption. This paper outlines
potential future avenues for research, including enhancing
HePiLUT's versatility and optimizing data and weight
transfer efficiency for other state-of-the-art CNN acclerator.
Furthermore, the study aims to explore HePiLUT's
performance concerning other CNN-based detection and
classification models, such as Single Shot Detectors (SSDs).
However, this novel pipelining foundation of HePiLUT
serves as a stepping stone for further advancements in this
domain, promising improvements and innovations in
accelerating deep learning models on FPGA platforms.

REFERENCES
[1] R. A. Amin, M. Hasan, V. Wiese and R. Obermaisser, ‘FPGA-Based

Real-Time Object Detection and Classification System Using
YOLO for Edge Computing,’ IEEE Access, vol. 12, pp. 73268-
73278, 2024.

[2] M. P. Véstias, R. P. Duarte, J. T. de Sousa, and H. C. Neto, ‘A fast
and scalable architecture to run convolutional neural networks in low
density FPGAs’, Microprocessors and Microsystems, vol. 77, p.
103136, 2020.

[3] Y. Ma, Y. Cao, S. Vrudhula and J. -s. Seo, ‘Optimizing the
Convolution Operation to Accelerate Deep Neural Networks on
FPGA,’ IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 7, pp. 1354-1367, 2018.

[4] X. Yin, Z. Wu, D. Li, C. Shen and Y. Liu, ‘An Efficient Hardware
Accelerator for Block Sparse Convolutional Neural Networks on
FPGA,’ IEEE Embedded Systems Letters, Early Access, 2023.

[5] H. -R. Bai, ‘A Flexible and Low-Resource CNN Accelerator on
FPGA for Edge Computing,’ 2023 3rd International Conference on
Neural Networks, Information and Communication Engineering
(NNICE), Guangzhou, China, pp. 646-650, 2023.

[6] W. Peisong, and J. Cheng, ‘Accelerating convolutional neural
networks for mobile applications’, 24th ACM international
conference on Multimedia, pp. 541-545, 2016.

[7] X. Wu, Y. Ma, M. Wang and Z. Wang, ‘A Flexible and Efficient
FPGA Accelerator for Various Large-Scale and Lightweight CNNs,’
IEEE Transactions on Circuits and Systems I: Regular Papers, vol.
69, no. 3, pp. 1185-1198, 2022.

[8] M. P. Véstias et al., ‘Fast convolutional neural networks in low
density FPGAs using zero-skipping and weight pruning’,
Electronics, vol. 8, no. 11, p. 1321, 2019.

[9] Y. Umuroglu, J. F. Nicholas, G. Giulio, B. Michaela, L. Philip, J.
Magnus, and V. Kees, ‘Finn: A framework for fast, scalable
binarized neural network inference,’ ACM/SIGDA international
symposium on field-programmable gate arrays, pp. 65-74. 2017.

[10] J. Knapheide, B. Stabernack and M. Kuhnke, ‘A High Throughput
MobileNetV2 FPGA Implementation Based on a Flexible

Architecture for Depthwise Separable Convolution,’ 30th
International Conference on Field-Programmable Logic and
Applications (FPL), Gothenburg, Sweden, pp. 277-283, 2020.

[11] G. Li, F. Li, T. Zhao and J. Cheng, ‘Block convolution: Towards
memory-efficient inference of large-scale CNNs on FPGA,’ 2018
Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, Germany, pp. 1163-1166, 2018.

[12] A. Ganguly, R. Muralidhar and V. Singh, ‘Towards Energy Efficient
non-von Neumann Architectures for Deep Learning,’ 20th
International Symposium on Quality Electronic Design (ISQED),
Santa Clara, CA, USA, pp. 335-342, 2019.

[13] P. R. Sutradhar, M. Connolly, S. Bavikadi, S. M. Pudukotai
Dinakarrao, M. A. Indovina and A. Ganguly, ‘pPIM: A
Programmable Processor-in-Memory Architecture With Precision-
Scaling for Deep Learning,’ IEEE Computer Architecture Letters,
vol. 19, no. 2, pp. 118-121, 2020.

[14] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan and Y. Xie,
‘DRISA: A DRAM-based Reconfigurable In-Situ Accelerator,’
2017 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, pp. 288-301, 2017.

[15] M. Gao, G. Ayers, and C. Kozyrakis, ‘Practical near-data processing
for in-memory analytics frameworks’, International Conference on
Parallel Architecture and Compilation (PACT), San Francisco,
California, USA, pp. 113-124, 2015.

[16] Y. Chen and M. S. Abdelfattah, ‘BRAMAC: Compute-in-BRAM
Architectures for Multiply-Accumulate on FPGAs’, 31st Annual
International Symposium on Field-Programmable Custom
Computing Machines (FCCM), Orlando, FL, USA, pp. 52-62, 2023.

[17] Q. Deng, Y. Zhang, M. Zhang and J. Yang, ‘LAcc: Exploiting
Lookup Table-based Fast and Accurate Vector Multiplication in
DRAM-based CNN Accelerator,’ 56th ACM/IEEE Design
Automation Conference (DAC), Las Vegas, USA, pp. 1-6, 2019.

[18] Y. Umuroglu, Y. Akhauri, N. J. Fraser and M. Blott, ‘LogicNets:
Co-Designed Neural Networks and Circuits for Extreme-
Throughput Applications,’ 30th International Conference on Field-
Programmable Logic and Applications (FPL), Gothenburg,
Sweden, pp. 291-297, 2020.

[19] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides,
‘LUTNet: Rethinking inference in FPGA soft logic’, 27th Annual
International Symposium on Field-Programmable Custom
Computing Machines (FCCM), San Diego, USA, pp. 26-34, 2019.

[20] B. Zhao, Y. Wang, H. Zhang, J. Zhang, Y. Chen and Y. Yang, ‘4-bit
CNN Quantization Method With Compact LUT-Based Multiplier
Implementation on FPGA,’ IEEE Transactions on Instrumentation
and Measurement, vol. 72, pp. 1-10, 2023.

[21] Y. Ma et al., ‘Scalable and modularized RTL compilation of
Convolutional Neural Networks onto FPGA,’ 2016 26th
International Conference on Field Programmable Logic and
Applications (FPL), Lausanne, Switzerland, pp. 1-8, 2016.

[22] J. Meng, S. K. Venkataramanaiah, C. Zhou, P. Hansen, P.
Whatmough and J. -s. Seo., ‘FixyFPGA: Efficient FPGA
Accelerator for Deep Neural Networks with High Element-Wise
Sparsity and without External Memory Access,’ 31st International
Conference on Field-Programmable Logic and Applications (FPL),
Dresden, Germany, pp. 9-16, 2021.

[23] M. Hall and V. Betz, ‘HPIPE: Heterogeneous Layer-Pipelined and
Sparse-Aware CNN Inference for FPGAs’, ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
Seaside, CA, USA, p. 320, 2020.

[24] Y. Zhao et al., ‘Automatic Generation of Multi-Precision Multi-
Arithmetic CNN Accelerators for FPGAs,’ 2019 International
Conference on Field-Programmable Technology (ICFPT), Tianjin,
China, pp. 45-53, 2019.

[25] Y. Fu, E. Wu, A. Sirasao, S. Attia, K. Khan, and R. Wittig, ‘Deep
learning with int8 optimization on xilinx devices’, White Paper,
2016.

[26] V. H. Kim and K. K. Choi, ‘A Reconfigurable CNN-Based
Accelerator Design for Fast and Energy-Efficient Object Detection
System on Mobile FPGA,’ IEEE Access, vol. 11, pp. 59438-59445,
2023.

[27] R. Zhao and W. Song, ‘Accelerating binarized convolutional neural
networks with software-programmable FPGAs,’ ACM International
Symposium on Field-Programmable Gate Arrays (ISFPGA), pp.15-
24, 2017.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

