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Abstract—Field programmable gate arrays (FPGAs) have 
gained recognition as a suitable platform for implementing 
Convolutional Neural Network (CNN)-based algorithms due to 
their favorable attributes, such as energy efficiency and parallel 
computing capabilities. Nevertheless, deploying CNNs on 
resource-constrained devices poses challenges due to the 
substantial computational demands of CNNs and limited on-
chip hardware resources. A majority of prior research 
predominantly relies on the limited block RAM (BRAM) for 
storing CNN parameters, and costly digital signal processing 
(DSP) blocks for executing multiply-accumulate (MAC) 
operations. To address these constraints, this paper introduces 
HePiLUT, a novel compiler designed to analyze the CNN 
structure and parameters, and automatically generates a 
heterogeneous pipelined CNN accelerator architecture by 
utilizing Look-Up Table (LUT). In addition, a dataflow 
controller in the pipelining architecture has been developed to 
foster a resource-efficient and low-latency CNN accelerator for 
FPGAs. HePiLUT leverages LUTs to store input image data and 
execute MAC operations instead of DSP blocks. The efficacy of 
the proposed CNN accelerator compiler has been evaluated on 
the Xilinx ZCU102 FPGA platform utilizing the Visual 
Geometry Group (VGG) architecture and CIFAR-10 dataset. 
The findings underscore HePiLUT's capability, showcasing a 
substantial reduction compared to state-of-the-art CNN 
accelerator design. However, these substantial savings come at 
a trade-off, as there is a 3% decrease in throughput 
performance. The proposed HePiLUT significantly reduces the 
FPGA resource utilization and automatic compiler solution in 
CNN implementation, providing considerable support for 
sustainable and energy-efficient computing systems. 

Keywords—CNN accelerator, heterogenous pipelining, 
FPGAs 

I. INTRODUCTION

Deep Neural Networks (DNN), particularly CNN offer a 
robust method for extracting abstract features from image 
data, showcasing significant success in various computer 
vision applications [1] due to their achieved accuracy like 
humans [2]. CNNs typically comprise multiple layers 
involving computationally intensive convolution operations 
followed by classification layers, posing challenges for 
achieving real-time performance even on the most advanced 
computing platforms. However, this method demands 
substantial network bandwidth and prolonged processing 
periods, making it impractical for scenarios with stringent 
real-time requirements. Consequently, contemporary edge AI 
solutions frequently leverage FPGAs to implement and 
execute machine learning algorithms. FPGAs exhibits a LUT-
based product term structure and superior parallel computing 
capabilities, contributing to enhanced energy efficiency and 
lower power consumption than alternatives like GPUs, CPUs, 
or VPU systems. Despite these advantages, CNN accelerators 
encounter limitations in memory bandwidth and capacity, a 
direct result of the CNN algorithms' computation and the 

memory-intensive nature, especially in resource-constrained 
edge devices like FPGAs. 

Two common challenges encountered during the 
deployment of CNNs on FPGAs are related to computational 
intensity and memory intensity [3]. Researchers have 
proposed diverse CNN models and methodologies targeting 
these issues in response. Techniques aiming to alleviate the 
computational complexity of CNNs include sparse neural 
networks [4], low-precision fixed-point quantization [5], 
tensor decomposition [6], zero-transfer skipping methods [7], 
weight pruning [8], binarized neural networks [9], depthwise 
separable convolution [10], and the utilization of block 
convolutions to reduce computational load [11]. 

In tandem with these innovations, architectural 
innovations in memory management have been pursued, as 
contemporary CNNs tend to be larger in scale and cannot 
solely rely on on-chip memory for storage. Furthermore, novel 
computing architectures, such as 'non-von Neumann' 
paradigms [12], have been introduced, encompassing 
processing-in-memory (PIM) [13], in-memory computing 
(IMC) [14], near-data processing (NDP) [15], and compute-
in-BRAM [16] all aimed at mitigating data transfer 
bottlenecks. Notably, LUT-based PIMs have arisen as a 
promising solution to enhance processing speed [17]. Besides, 
recent reports have also highlighted the effectiveness of LUT-
based neural network architectures [18, 19] and LUT-based 
multiplier [20] for CNN applications. 

Numerous methodologies have been explored to create 
resource-efficient CNN accelerators. Regrettably, the FPGA 
research community currently lacks a dedicated CNN 
accelerator compiler for hardware implementation of CNNs, 
which automatically generates a resource-efficient CNN 
accelerator based on input neural network description files. 
This paper introduces HePiLUT, a novel heterogeneous 
pipelining technique based compiler aimed at mitigating 
computational latency and resource consumption omitting the 
need for data storage within memories and foregoing the 
loading of complete image data. Evaluation of HePiLUT has 
been conducted using the Xilinx ZCU102 FPGA board, 
resulting in a performance of 129600 FPS for 32×32 pixel 
RGB images while consuming significantly fewer resources 
compared to the state-of-the-art CNN accelerator. The novel 
contributions of this paper are outlined as follows: 

1. HePiLUT introduces a novel CNN accelerator
compiler  that generates a heterogeneous pipelined CNN 
module based on the input CNN architecture. This 
enhancement facilitates the orderly execution of parallel 
instructions across all CNN layers and RGB channels. 

2. HePiLUT optimizes CNN accelerator design layer
by layer, prioritizing resource efficiency and flexibility. By 
using LUT-based MAC operations, it eliminates the need for 
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external memory access, BRAM, and DSP, streamlining the 
architecture for improved performance. 

3. The performance evaluation of the acceleration 
system generated by the proposed HePiLUT CNN accelerator 
compiler has been conducted by comparing it with that of 
state-of-the-art CNN accelerators. 

II. RELATED WORK 

Numerous techniques has been proposed to developed 
efficient CNN accelerators, aiming to improve computational 
power, reduce energy consumption, and optimize resource 
utilization. This section gives an overview of prominent 
architectures and methodologies reported in contemporary 
literature to identify state-of-the-art CNN accelerators. 

Ma et al. [21] reported on a scalable and modularized RTL 
compilation of CNN for FPGA, which automatically 
generates a set of modular and scalable computing primitives 
capable of accelerating various deep learning algorithms. 
However, this method does not consider any pipelining 
architecture, resulting in comparatively lower throughput 
compared to recent CNN accelerators such as FINN [9], 
FixyFPGA [22], and HPIPE [23]. Several other CNN 
accelerator designs, such as HPIPE [23] and Tomatto [24], 
have been demonstrated and evaluated with 224×224 pixel 
images, exhibiting very high throughput. However, these 
designs also necessitated very high FPGA resources and did 
not consider accuracy.  

Umuroglu et al. [9] introduced FINN, a scalable and fast 
CNN accelerator rooted in a binarized neural network 
framework.. FINN exhibits impressive performance by 
demonstrating a maximum classification speed of 21,906 
images per second for an image size of 32×32 pixel images. 
However, despite its strengths, BNNs encounter limitations in 
leveraging the inherent FPGA architecture with high 
precision. 

Meng et al. [22] introduced FixyFPGA, a CNN accelerator 
harnessing the element-wise sparsity technique for both VGG-
7 and MobileNet. This method encodes the trained CNN 
network's weights directly into the hardware, utilizing them as 
fixed operands for multiplication. This approach achieves 
notable speeds by employing a fully parallel and pipelined 
computation engine, reaching 134,000 FPS for 32×32 pixel 
images. 

The predominant focus of prior research has centered on 
DSP-based MAC operations for computation and BRAM to 
store the CNN weights, often resulting in high power 
consumption and resource demands. Despite the high 
performance offered by DSP blocks, their utilization may not 
always be optimal considering overall performance and area 

requirements, especially for large CNN applications due to 
limitations such as quantity, flexibility, clock frequency 
constraints, and restricted precision operations are associated 
with DSP blocks. In contrast, HePiLUT introduces a LUT-
based heterogeneous pipeline architecture that leverages 
FPGA's inherent features of low latency and minimal resource 
utilization. Moreover, efficient control of the dataflow in the 
proposed architecture helps in reducing the number of LUT 
usage in FPGA fabric. 

III. IMPLEMENTATION 

 The HePiLUT CNN accelerator has been implemented 
using a universal CNN framework based on the Very High-
Speed Integrated Circuit Hardware Description Language 
(VHDL) for image classification tasks. Notably, HePiLUT is 
designed to cater to various FPGAs, with a particular focus on 
low-density FPGAs characterized by constrained memory and 
computational resources. The reconfigurable nature of LUTs 
enables support for different precision data, necessitating 
fewer LUTs for operations with reduced precision. Fig. 1 
illustrates the block diagram of the proposed HePiLUT 
architecture. HePiLUT consists of three clusters: first, data 
preprocessing through software tools such as TensorFlow or 
PyTorch; second, the HePiLUT compiler, responsible for 
generating the CNN accelerator hardware design from the 
input neural network model; and third, synthesis and 
verification of the generated accelerator using Vivado. 

A. Data Pre-Processing 

The data pre-processing module plays a pivotal role in 
facilitating the interface between the CNN model and the 
HePiLUT CNN accelerator compiler. In this integral step, the 
input trained and quantized CNN model is required to 
conform to the .tflite format, which serves as the standardized 
medium for conveying crucial information pertaining to the 
neural network description and the underlying feature maps of 
the input image. Such meticulous inclusion ensures the 
seamless integration of essential model parameters and input 
data representations, facilitating the subsequent compilation 
and optimization processes within the HePiLUT architecture.   

B. HePiLUT CNN Accelerator Compiler 

The network analyzer module within the HePiLUT CNN 
accelerator compiler undertakes an initial investigation into 
the input CNN layers and their associated parameters. This 
analytical process encompasses the examination of critical  
attributes such as kernel size, stride size, and filter number 
across all convolutional and max-pooling layers. 
Subsequently, the generated accelerator design and its 
interconnections in the hardware are adjusted accordingly to 
align with these parameters. Additionally, HePiLUT's 
network analyzer evaluates user-defined computing pipeline   

 
Fig. 1. Block diagram of the HePiLUT architecture. 
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architectures, thereby generating and integrating 
parameterized CNN modules. Moreover, the network 
analyzer orchestrates the synchronization of the clock to 
harmonize with the specifications of the FPGA device.  In a 
bid to conserve power during calculations and curtail 
resource consumption, all parameters, including filters and 
weights for each respective layer, have been extracted from 
the trained model and converted into 8-bit fixed-point data. 
Notably, the optimization achieved through the use of 8-bit 
precision is deemed sufficient to maintain an acceptable 
level of inference accuracy. Following this synchronization, 
the parameters of the input CNN model, including weight 
and bias, are extracted and stored in a VHDL array format 
subsequent to conversion into binary 2's complement 
representation. This meticulous process ensures the 
computational engine configuration of the HePiLUT 
compiler. 

The core of the proposed HePiLUT CNN accelerator 
compiler is its computation engine configuration, 
comprising interconnected blocks organized in a cascade 
configuration. These blocks demonstrate a heterogeneous 
pipeline structure, serving all layers of the CNN and 
handling the three RGB layers of the input image. The 
HePiLUT pipeline structure involves three key 
procedures—data load, data calculation, and data transfer to 
optimize the accelerator's efficiency.  

1. Data Load 

To mitigate the reliance on the slower Off-chip 
memory, a strategy has been employed wherein the input 
feature maps undergo processing without being stored in 
memory. The input image data is accessed from DDR 
memory by HePiLUT computational engine through 
Advanced eXtensible Interface (AXI) Stream. Loading of 
the input image data occurs in a line-by-line fixed row and 
column manner, populating the 3D array of input features 
and kernels stored in the LUT memory. However, the 
loading process for each CNN layer follows a specific 
arrangement. For the initial convolution layer of the CNN, 
HePiLUT loads only (K+1) lines of input data for a kernel 
size of (K×K) and subsequently initiates the calculation of 

the first convolution layer. The data loading process is 
regulated by two control signals until the convolution 
operation is completed. These two control signals 
(READY and VALID) are utilized to regulate the data flow 
from DDR to the HePiLUT computation engine. The 
READY signal denotes the readiness status of the data 
receiver layer, indicating whether it is prepared to receive 
data. Conversely, the VALID signal signifies the validity 
of the data being transmitted by the sender. Within the 
processing system (PS), the ARM processor has the 
responsibility of initializing the computation engine on 
programmable logic (PL) by utilizing the control signal. 
This process facilitates the dynamic configuration of 
convolution layer parameters during runtime cycles. Upon 
the completion of each convolutional operation, the newly 
calculated data is transferred to the next layer. This data 
transfer mechanism serves as the loading process for the 
subsequent CNN layer. The new data supersedes the old 
data that has already undergone processing. This iterative 
use of the same memory location multiple times 
contributes to HePiLUT's enhanced resource efficiency.  

 The loading process within HePiLUT is visually 
depicted in Fig. 2. In this representation, considering a 
convolution kernel size of 5×5 and an input image size of 
100×100 pixels. As the kernel size is 5×5, the loading of 
image data progresses until the 6th line of the input image 
data (illustrated in steps a, b, and c in Fig. 2). At this point, 
the calculation process begins alongside with the data 
loading process. Simultaneously, the calculated values are 
transferred to the subsequent CNN layer (depicted in steps 
c, d, e, and f in Fig. 2). In subsequent steps, the loading of 
input data recommences from the 7th line of the input image 
data, replacing the previously stored input data in the  LUT 
memory. This iterative process continues until the next 
layer is filled with data equivalent to the kernel height. If the 
subsequent layer obtains the necessary data to initiate the 
calculation process, then all stages of data loading, 
calculation, and transfer occur simultaneously. This ensures 
efficient and continuous processing within the HePiLUT 
accelerator data loading structure.

 

 
Fig. 2. Pipelining architecture of the proposed HePiLUT CNN accelerator.
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2. Calculation 

In the HePiLUT architecture, the computational 
engine takes charge of expediting the multiplication and 
addition functions essential in CNN calculations, 
employing a pipelined approach for parallelization. Each 
multiplication and addition array is dedicated to computing 
the pixels for an individual output feature map. The 
initiation of the calculation operation begins promptly upon 
the loading of sufficient input data. For instance, in the 
scenario where an image comprises a total of 100×100 data 
and a 5×5 kernel is applied, the convolution calculation 
operation commences upon receiving the 6th row of input 
image data. It doesn't wait for the complete loading of all 
100×100 data to commence the convolutional calculation 
operation. Once the convolutional calculation operation 
concludes, the newly computed data is forwarded to the 
next layer for subsequent processing in the following clock 
cycle. This iterative process continues for each CNN layer 
within the HePiLUT architecture, optimizing the 
computation by starting calculations as soon as the required 
input data is available rather than waiting for the complete 
input data set to be loaded. 

3. Data Transfer 

 HePiLUT efficiently manages convolution kernels and 
feature maps during convolutional operations, creating new 
feature maps that act as input for subsequent layers. Within 
a convolution operation, the key processes involve 
multiplication and addition, both of which demand 
substantial DSP (Digital Signal Processing) resources. 
Additionally, the generated feature maps from these 
operations necessitate considerable memory for buffering. 
To optimize resource utilization, HePiLUT doesn't store 
any output feature maps from any CNN layer. Instead, it 
promptly transfers the calculated values directly into the 
subsequent layer. This pipelined data transfer approach 
significantly conserves resources, minimizing the need for 

storing intermediary feature maps and ensuring a more 
efficient utilization of memory and processing capabilities. 

C. Design Synthesis 

The HePiLUT CNN accelerator compiler orchestrates 
convolutional operations utilizing a heterogeneous 
pipelining architecture, generating a VHDL script for 
hardware implementation. After completing the design 
phase and establishing connections among layers, the 
HePiLUT Intellectual Property (IP) core has been created. 
To utilize this IP within a block design, it was packaged 
with an AXI interface, which prevents direct 
communication with the Processing System (PS) to retrieve 
image data from DDR. To address this limitation, another 
IP was specifically designed. This secondary IP receives 
image data from the PS via Direct Memory Access (DMA) 
using the AXI stream. It formats the received image data 
according to the requirements of the HePiLUT IP and then 
transmits the formatted data to the HePiLUT IP for further 
processing. The computational resources required on the  
FPGA are directly proportional to the MAC operation 
involving input feature maps and kernels for producing 
output feature maps. Fig. 3 represent the hardware  
architecture of the HePiLUT. However, the RTL design 
then synthesis and analysis utilizing synthesis tools such as 
Xilinx Vivado. This process culminates in the generation 
of a bitstream file, essential for high-performance FPGA or 
ASIC implementations. 

IV. RESULT AND DISCUSSION 

 The evaluation process for the HePiLUT CNN 
accelerator involved both simulation and hardware 
implementation. The simulation phase was conducted using 
a designed test  bench for the image size of 32×32 pixels, 
within the Xilinx Vivado environment. An experimental 
dataset (CIFAR-10) has been constructed to facilitate the 
simulation. This dataset comprised images with sizes of  

 

 
Fig. 3. Hardware architecture of the HePiLUT.
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32×32 pixels, with pixel values ranging from 0 to 255. The 
simulation results were validated by comparing the output 
sequence with the sequence of input images. The successful 
match between the result sequence and the input images 
during simulation provided confidence in the functionality 
of the HePiLUT accelerator. Following the simulation 
phase, the HePiLUT accelerator underwent synthesis and 
was deployed to the Xilinx ZCU102 FPGA board for 
hardware evaluation. This step involved implementing the 
accelerator on actual hardware to assess its performance and 
validate its functionality in a real-world context. The 
throughput has been measured through the Vivado 
simulation analysis, resource utilization measured from the 
Vivado synthesis report, and power measured by the Xilinx 
Power Estimator (XPE). On the other hand, a run time 
power measurement also has been conducted to validate the 
power consumption of the HePiLUT.  

A. Data Load Controller Result 

 HePiLUT serves the purpose of addressing on-chip 
memory limitations, particularly concerning the 
deployment of larger networks, all without compromising 
computational speed. For instance, consider a 32×32 image 
being processed by HePiLUT. In a conventional 
convolutional layer, the data loading process would 
typically occupy a significant amount of memory: 32×32×3, 
accounting for 3072 bytes. Instead of loading the entire 
image data, HePiLUT strategically processes data in a more 
efficient manner. For the same 32×32 image, HePiLUT 
occupies only 32×4×3, which amounts to 384 bytes. This 
represents a remarkable reduction, approximately 8x less 
memory consumption compared to the conventional data 
loading process.  

B. FPGA Implementation Result 

 The benchmarking results of HePiLUT with VGG-7 
CNN model architectures on varied image sizes and 
datasets showcase its noteworthy performance across 
several metrics. For image classification on the CIFAR-10 
dataset, HePiLUT takes 7716 ns. This translates to an 
notable classification speed of 129600 FPS at the frequency 
of 137MHz. In terms of resource utilization, HePiLUT 
CNN accelerator demonstrates efficiency by utilizing only 
4098 LUTs, leveraging its reliance on LUTs for data 
processing. The power consumption of the HePiLUT is 
significant, with a consistent consumption of around 3.5W. 
This underscores the power efficiency of the HePiLUT 
accelerator. Furthermore, HePiLUT exhibits high accuracy, 
achieving a classification accuracy of 82.05% for CIFAR-
10 image classifications. These findings collectively 

underscore the efficacy of the HePiLUT accelerator in terms 
of speed, resource efficiency, and accuracy. 

C. Comparison with State-of-the-Art CNN Accelerator 

 Comparing HePiLUT with other top-notch FPGA-based 
CNN accelerators reveals its distinct advantages in various 
performance aspects, such as operating frequency, power 
consumption, and throughput.   Table 1 represents the 
results of HePiLUT with state-of-the-art CNN accelerator 
for the  32×32 RGB image classifications and serves as a 
clear demonstration of HePiLUT's notable efficiency on 
image classification tasks. The comparative analysis 
showcases HePiLUT's competitive edge, likely 
demonstrating the ability of working low (137MHz) 
frequency, reduced latencies, higher throughputs, or a 
combination of these factors, illustrating its prominence 
among FPGA-based CNN accelerators. Its efficient 
utilization of LUTs for CNN   parameter embedding stands 
out as a distinct advantage, paving the way for enhanced 
performance metrics compared to its counterparts in the 
field. This unique approach underscores HePiLUT's 
resource optimization strategy and its ability to operate 
efficiently with minimal hardware resources. 

 In the experimental use case of 32×32 pixel images, 
FixyFPGA demonstrates higher throughput of 134000 FPS 
the cost of significantly higher power consumption and 
higher resource utilization. In contrast, HePiLUT 
maintaining competitive throughput of 129600 FPS with 
higher precision. However, HePiLUT demonstrates notable 
advantages in resource utilization efficiency, with minimal 
BRAM and DSP utilization compared to the other CNN 
accelerators for 32×32 RGB image classification. Fig. 4 
illustrates the performance evaluation of the proposed 
HePiLUT CNN accelerator in comparison to FixyFPGA, 
chosen due to its representation of maximum throughput in 
contemporary CNN accelerator designs. The 
comprehensive analysis positions HePiLUT as an 
competitive solution for CNN acceleration endeavors, 
characterized by substantial reductions in resource 
utilization (98% LUT, 99% DSP, and 100% BRAM), 
alongside energy-efficient operation, manifesting in a 72% 
reduction in power consumption. However, this  
enhancement comes with a marginal trade-off, with a 
3%mreduction in throughput. Besides, HePiLUT maintains  
its emphasis on achieving maximum throughput with   
minimal resource consumption, resulting in a lower 
operating frequency. This strategic approach ensures that 
even resource-constrained FPGA devices can effectively 
leverage the benefits of the HePiLUT accelerator.

TABLE I.      EVALUATION OF HEPILUT WITH STATE-OF-THE-ART CNN ACCELEARATOR FOR THE 32×32 RGB IMAGE CLASSIFICATIONS. 

Author Kim et. al [26] Zhao et. al [27] FINN [9] FixyFPGA [22] HePiLUT 

CNN Model Resnet BNN BNN VGG-7 VGG-7 

FPGA PYNQ-Z1 XC7Z020 ZC706 Stratix 10 ZCU 102 

BRAMs 523 94 186 290 0 

DSPs 167 3 - 360 1 

LUTs 15200 46900 46253 814980 4098 

Precision 16-bit 2-bit 1-bit 4-bit 8-bit 

Frequency (MHz) 50 143 200 137.29 137 

Throughput (FPS) 9.17 168 21906 134000 129600 

Power (W) 1.44 4.7 25 22.03 3.45 

Efficiency (FPS/W) 6.36 35.74 876 6008 37565 
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Fig. 4.     Performance evaluation of the HePiLUT CNN accelerator. 

V. CONCLUSION AND FUTURE WORK 

The paper introduces HePiLUT, a distinctive LUT-
based heterogeneous pipelined CNN accelerator 
architecture designed for FPGAs. By implementing 
representative VGG CNN algorithms on the Xilinx ZCU102 
FPGA board, the study showcases outstanding performance 
metrics, reaching a peak performance of 129600 FPS for 
32×32 pixel RGB images. Notably, this achievements are 
accomplished while maintaining minimal resource 
utilization and low power consumption. This paper outlines 
potential future avenues for research, including enhancing 
HePiLUT's versatility and optimizing data and weight 
transfer efficiency for other state-of-the-art CNN acclerator. 
Furthermore, the study aims to explore HePiLUT's 
performance concerning other CNN-based detection and 
classification models, such as Single Shot Detectors (SSDs). 
However, this novel pipelining foundation of HePiLUT 
serves as a stepping stone for further advancements in this 
domain, promising improvements and innovations in 
accelerating deep learning models on FPGA platforms. 
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