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Abstract—Wireless communication systems, rooted in the
propagation of electromagnetic waves, have traditionally oper-
ated within the framework of digital modules such as source
coding, encryption, and modulation. However, the conventional
”modular” approach faces challenges in achieving ”global opti-
mization,” relying on simulated environments that diverge from
real-world channel conditions. This paper proposes a solution
to integrate deep learning into wireless communication systems,
envisioning intelligent communication systems that learn and
adapt. Recent strides in wireless channel modeling have em-
braced Generative Adversarial Networks (GANs) to generate
realistic communication channel models. GANs applied to optical
and Radio Frequency (RF) channels bridge gaps where actual
measurements are unavailable, providing synthetic models that
mirror real-world statistics. This paper’s contribution involves
innovating channel modeling by replacing autoencoder latent
spaces with a GAN model, generalizing the model for diverse
channel types, implementing a data-driven approach using Con-
ditional GANs for realistic channel effects, and constructing
a unified model adept at simultaneously handling WiFi and
LiFi channels. The envisioned outcome is a groundbreaking
approach that transcends the limitations of traditional wireless
communication, propelling intelligent communication networks
into an era of adaptability and optimized performance.

Index Terms—Generative Adversarial Networks (GANs),
Wireless Channel, AWGN, Rayleigh Fading, Data-driven Model,
LiFi, WiFi, Unified Channel.

I. INTRODUCTION

Wireless communication systems have traditionally relied
on electromagnetic waves, including analog and digital forms.
Modern digital wireless communication systems consist of
crucial components such as source coding, encryption, channel
coding, and modulation. These systems provide benefits such
as strong resistance to interference and effective error control.
However, they also face issues related to complex hardware
and the need for precise synchronization. Furthermore, the
conventional ”modular” approach typically results in ”local
optimization” rather than the optimal ”global optimization”
because it frequently depends on simulated environments
that fail to represent real-world channel conditions between
communication nodes accurately.

The emergence of deep learning, proposed by Hinton in
2006, has revolutionized machine learning, finding widespread
applications in natural language processing, speech recogni-
tion, computer vision, and communication systems. In wireless
communication, researchers aim to leverage deep learning for
intelligent communication to improve transmission speed and

reliability. Traditionally, convolutional neural networks (CNN)
and recurrent neural networks (RNN) have been proven to be
instrumental in tasks such as image classification and speech
recognition [1]. This paper explores the integration of deep
learning into wireless communication, envisioning an era of
intelligent communication systems that learn and adapt based
on uncertain prevailing channel conditions.

Recent advances in wireless channel modeling have led to
the adoption of Generative Adversarial Networks (GANs) [2].
GANs offer a powerful means to generate realistic communi-
cation channel models by learning the statistical characteristics
of the operating channels [2]. Applied to optical and Radio
Frequency (RF) channels, GANs bridge the gap where ac-
tual channel measurements are unavailable, creating synthetic
models that closely resemble real-world statistics. This reduces
the cost and time associated with channel characterization
and captures critical scenarios and unseen events that can
impact system performance. In addition, GANs can help
improve communication systems by implementing AI-based
transmitters and receivers capable of exchanging knowledge to
improve the system’s overall performance. This allows them
to quickly adapt to changing wireless environments, such as
cognitive radio networks. This paper explores the potential
of GANs for simultaneously addressing the limitations of
traditional wireless communication systems and advancing the
capabilities of intelligent networks. The paper aims to:

• Innovate channel modeling by replacing latent spaces in
the autoencoder with a GAN model.

• Generalize the model to optimize performance across
diverse channel types.

• Implement a data-driven approach using GANs for real-
istic channel effects.

• Build a unified model capable of handling the WiFi and
LiFi channels simultaneously.

The remainder of the paper is organized as follows. Section 2
provides related studies of end-to-end communications based
on deep learning (DL) and GAN and Conditional GAN-based
End-to-End Communications. Our methodology is presented
in Section 3. Section 4 presents the experimental and eval-
uation results. Finally, Section 5 concludes the paper and
discusses future work.
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II. RELATED WORKS

A. Deep Learning (DL) based End-to-End Communications

Deep learning has gained prominence in research on the
physical layer technology of wireless communication. Ap-
plications include communication system security, channel
decoding, modulation recognition, MIMO communication, and
OFDM signal processing. In modulation recognition, O’Shea’s
pioneering application of CNN in 2016 demonstrated superior
accuracy compared to traditional methods [3]. MathWorks
extended this work to classify diverse signals using the
ADALM-PLUTO software radio platform. Advancements in
channel decoding include the enhancement of the confidence
propagation decoding algorithm for Low-Density Parity-Check
(LDPC) through deep learning [4], [5]. In OFDM signal
processing, deep learning successfully reduced the maximum
average power ratio of OFDM signals (PAPR) [6]. End-to-end
communication systems for OFDM signals that utilize deep
learning autoencoders have been implemented in [7]- [10].
For MIMO communication systems, several studies have ex-
plored the feasibility of deep learning applications, addressing
challenges related to channel interference and fading. Deep
learning autoencoders have been used in research on commu-
nication system security technology to facilitate performance
evaluation and security transmission and authentication [11].
However, current deep learning applications in the physical
layer often focus on independently optimizing specific sub-
modules or jointly enhancing several sub-modules, such as
channel coding and source coding. Although achieving ”local
optimization” for specific components, these approaches fall
short of ensuring ”global optimization” for the overall perfor-
mance of wireless communication systems [12].

Advancements in end-to-end learning systems have demon-
strated comparable performance to traditional block struc-
tures, particularly under the Additive White Gaussian Noise
(AWGN) condition [13]. This approach has been extended to
address hardware imperfections in [14] and applied within the
OFDM system in [15]. In modulation and demodulation, the
work in [16] employs a CNN to achieve improved perfor-
mance, especially for very high-order modulation. Further-
more, the scope of end-to-end communication systems in-
cludes source coding to transmit text or images, as explored in
[17]. The training of end-to-end communication systems with-
out explicit channel models has been studied in recent studies
[18]- [20]. In [18], a reinforcement learning-based architecture
improves the end-to-end communication system by removing
the dependency on the channel state information (CSI) or the
channel transfer function. Here, transmitter training involves
joint consideration of the channel and receiver as components
of the environment. The receiver’s recovery performance acts
as the guiding reward for transmitter training. Moreover, the
work in [19] introduces a model-free approach to end-to-end
learning, utilizing stochastic perturbation methods. In [20],
the authors introduce a novel end-to-end learning framework
aimed at improving Mixed Carrier Communication (MCC)
waveforms in Visible Light Communication (VLC) for Indoor

Flying Networks (IFNs). The main goal was to facilitate
diverse services concurrently, including localization, dimming,
control, and high-speed data transmission. A vital part of this
framework was the addition of two dedicated classifiers that
improve the reception of sensitive MCC-LS (localization and
signaling) data. This makes the system more reliable overall.
The work in [20] also conducted a comprehensive convergence
analysis, shedding light on the effective transmission of control
and sensing information to resource-limited devices while
facilitating high-speed data transfer to more capable devices.
The proposed complete learning system for MCC in VLC-
enabled IFNs comprises several vital parts. Each part solves a
different problem and makes the whole solution work better.
The MCC Virtual Envelope Generator is crucial for creating a
virtual Pulse Width Modulation (PWM) envelope, conveying
essential information about localization and signaling. The
proposed Auto-Encoder (AE) has both encoder/transmitter
and decoder/receiver neural networks trained to reduce the
categorical cross-entropy cost function as much as possible.
This makes it possible to encode and decode MCC waveforms
efficiently. Additionally, two particular classifiers were built to
decode the BPSK and BPM data from the MCC waveform.
These classifiers are pre-trained to identify important features
needed for sensing, controlling, and locating things. The
decoding process includes returning the original O-OFDM
signal while considering ACO-OFDM subcarrier mapping,
Hermitian symmetry, and specific encoding structures. This
decoding intricacy is vital for accommodating the effects of the
VLC channel, modeled as an AWGN channel, enhancing the
framework’s robustness in realistic communication scenarios.
Lastly, the framework does an excellent job of dealing with
the problems that come up with O-OFDM’s high-speed data
transfer by assuming that devices have the right processing
power and using a custom reverse reshaping layer to make data
transfer fast and reliable. The suggested solution looks at how
to improve the encoding and decoding of MCC waveforms in
VLC-enabled IFNs, focusing on making them more flexible
and dependable in a wide range of communication scenarios.

B. GAN and Conditional GAN-based End-to-End Communi-
cations

GAN consists of two main components (the generator and
the discriminator). The generator is responsible for learning
how to generate samples like the real ones, and the discrimi-
nator will try to differentiate the generated data from the real
data. Once the generator can fool the discriminator, the genera-
tor samples will be trusted to be used in different applications.
Each component tries to learn how to increase the error of the
other component. GANs provide a powerful tool for signal
processing and data synthesis. GANs can generate realistic
data, which is particularly beneficial for testing and validating
the performance of communication systems without relying on
extensive real-world data collection or unrealistic stochastic
models. However, GANs face several deployment challenges.
One notable disadvantage is the potential for data to be
generated that may not accurately represent the complexities
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of real-world communication scenarios. In addition, training
GANs require substantial computational resources and exper-
tise, which presents a challenge for smaller research teams
or organizations with limited resources. In addition, there is
a type of GAN known as Conditional Generative Adversarial
Networks (CGANs) that offers a unique and valuable set of
capabilities and features. Such networks play an essential role
in signal processing, image synthesis, data communication,
and data compression, thereby influencing various aspects of
the design and optimization of communication systems.

The authors in [20] proposed a novel approach employ-
ing a CGAN to model channel impacts in an end-to-end
communication system. This innovative technique connects
the transmitter and receiver Deep Neural Networks (DNNs),
enabling the backpropagation of the transmitter DNN’s gradi-
ent from the receiver DNN. The simulation results showed
the usefulness of this method for different channels, such
as AWGN, frequency-selective channels, and Rayleigh fad-
ing. It is worth noting that the work in [20] was the first
attempt to use a conditional GAN to model the conditional
distribution of the channel, focusing on learning the effects
of the channel from data rather than on expert knowledge.
Adding a pilot symbol to the GAN’s conditioning informa-
tion made it even better at making samples specific to the
current channel. This is achieved by adding the received pilot
information to the condition information while the channel
output is produced. Furthermore, the authors employed CNN
to address the challenge of dimensionality, contributing to the
advancement of data-driven DNNs for comprehensive end-to-
end communication systems. In [21], GANs were introduced
as a scheme in which a generator and a discriminator engage
in a training competition. The discriminator’s feedback guides
the generator in improving its ability to produce samples
resembling real data. Although GANs are widely used in
computer vision, recent research efforts, as highlighted in
[22], focused on improving the quality of generated images.
A conditional GAN was suggested to make samples with
specific properties. This builds on the GAN framework by
adding context information to the generator and the discrimi-
nator. Originally, label information was added as a condition,
enabling the generator to produce data specific to a given
category. Currently, conditional GANs find widespread use in
altering the input style and content [23], [24]. In particular,
GANs have been employed to transform low-resolution images
into high-resolution counterparts [23]. Beyond applications
in computer vision, recent work, including [25], has utilized
GANs to model channel impairments in AWGN channels.

III. METHODOLOGY

This section describes the data that represent the noise and
architecture of the GAN model, shown in Figure 1.

1) Generating the Noise: Two types of noise are generated
as a unified model: the AWGN and the Rayleigh Fading. The
Rayleigh Fading represents the WiFi noise and the AWGN
represents the LiFi noise. The Rayleigh Fading was generated

on the basis of the Rayleigh function in Python. This noise
randomizes the input signal as follows:

yn = hn ∗ xn + wn (1)

where hn represents the channel gain in time n and a random
Rayleigh distribution value, xn is the transmitted signal, yn is
the output signal and wn is the noise component.

The AWGN has a normal distribution w that is added to the
input signal x to generate the output y, as follows:

y = x+ w (2)

The 4000 samples were generated for each channel noise
using the scale parameter 1 for the Rayleigh fading and the 0
mean and one standard deviation for AWGN. Figure 2 shows
different samples of these noises.

2) The GAN Model: The GAN model implemented in
this paper consists of two similar discriminator and generator
architectures. The generator has an input layer, two dense
layers using the LeakyReLU activation function, and an output
layer using the Tanh activation function. The discriminator has
the same layers, but the output layer uses a sigmoid activation
function. The generator loss is considered a Mean Squared
Error (MSE) when evaluating the generated samples. The dis-
criminator’s loss function is the binary cross-entropy to assess
the (0/1-Real/Fake) samples. The discriminator loss combines
the real and fake detection losses. Adamax optimizer with a
learning rate of 0.0001 was used. The model was trained
on the noise samples using an unsupervised learning method.
Random data using the randn function fed the generator, while
the discriminator was trained on the generated and actual data.
Because the model aims to produce noise to be added to the
channel, the noise provided to the generator was an advantage.
Figure 1 shows the methodology.

IV. RESULTS AND EVALUATION

As mentioned above, the discriminator cross-entropy loss
determines its ability to differentiate between real and fake
samples, while the generator loss is the MSE that can detect
the quality of the generated noise; by training, the generator
loss decreases and the discriminator cannot have a stable
change because the generator started to learn more about how
to generate the noise to be as accurate as possible. Figure
3 shows the results of the generator and discriminator loss
function for 90 epochs, where the GAN goal is achieved by
generating noise samples similar to the real ones. Figure 4
shows two of the generated samples. It is essential to mention
that the GAN should have another input to control which
noise to generate and provide other specifications or use two
generators with one discriminator to control the generated
noise type. Testing the discriminator in the generated model
only resulted in a loss of 1.22. The experiment was repeated
many times due to the high randomness of the data, and
all experiments showed promising results. For example, the
discriminator failed to detect 990 samples out of 1000, which
is 99% accuracy for the generated data.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



Fig. 1. Methodology.

Fig. 2. Training Samples.

Fig. 3. Generator and Discriminator Loss Results During the Training.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel solution to improve the
performance of wireless communication systems by integrat-

ing deep learning, specifically generative adversary networks
(GAN). Traditional modular approaches have faced challenges
in achieving global optimization due to their reliance on
simulated environments that deviate from real-world channel
conditions. The proposed approach overcomes these limita-
tions by leveraging GANs to generate realistic communication
channel models, filling gaps where actual measurements are
unavailable. This paper also suggested replacing the latent
spaces of the auto-encoder with GAN models, allowing for
a more generalized and adaptable framework across various
types of channels. This unified model signifies a significant
advancement, transcending the constraints of conventional
wireless communication and leading to an era of intelligence;
it can generate very real samples and outperform the dis-
criminator’s ability to detect them. In our future work, we
intend to concentrate on several pivotal areas to advance
and enhance the proposed GAN-based framework. Initially,
we plan to undertake comprehensive real-world testing and
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Fig. 4. Generated samples of noises.

deployment to assess the framework’s efficacy in various and
dynamic wireless communication settings. This will necessi-
tate collaboration with industry partners to apply the model
in practical contexts, ensuring that the system can adjust to
fluctuating conditions while sustaining optimal performance.
Moreover, we will investigate the optimization of the GAN
architecture itself, which includes fine-tuning hyperparameters
and experimenting with various GAN variants to bolster the
model’s robustness and precision. We also aim to explore the
incorporation of additional deep learning methodologies, such
as reinforcement learning, to further augment the system’s
capacity to adapt in real-time to evolving channel conditions.
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