
 

 

Service Function Chaining via SR-MPLS over P4:  

A rudimentary analysis 

Martins Mihaeljans  

Institute of Photonics, Electronics and 

Telecommunications 

Riga Technical University 

Riga, Latvia 

martins.mihaeljans@edu.rtu.lv

Andris Skrastins 

Institute of Photonics, Electronics and 

Telecommunications 

Riga Technical University 

Riga, Latvia 

andris.skrastins@rtu.lv 

Jurgis Porins 

Institute of Photonics, Electronics and 

Telecommunications 

Riga Technical University 

Riga, Latvia 

jurgis.porins@rtu.lv

Abstract—This study is a rudimentary analysis of segment 

routing with MPLS (SR-MPLS) use case for service function 

chaining (SFC) on protocol-independent switch architecture 

(PISA). Segment routing is a packet forwarding method that 

leverages both source routing and packet encapsulation. SFC is 

packet steering through ordered service function (SF) path 

technique where SFs are firewall, deep packet inspection, 

network address translation, etc. 

Goal of this study is to investigate the service function 

chaining domain use case scenario for PISA data plane 

incorporating SR-MPLS as transport. We developed program 

code for SFC domain elements in a programmable protocol-

independent packet processing (P4) and python languages. 

The outcome of this study is functionating SFC domain 

emulation in Mininet environment. Emulation results shows 

that SR-MPLS makes minimal overhead for all emulated SF 

paths in generalized proportion of approximately 1/1000 from 

overall transmission rate. Results also reveal a minimalistic 

transmission rate dependency on path length in generalized 

proportion of approximately 1/40 of transmission rate drop 

between shorter and longer SF paths. It’s evident that SR-

MPLS is fit to be used for SFC on PISA switches. 

Keywords—Intent-based networking, Programmable protocol 

-independent packet processing, Software defined networking, 

Service function chaining, Segment Routing with MPLS 

I. INTRODUCTION 

The Internet – a perpetual interconnectivity service held 
under man’s providence is a puzzle of many pieces. One of 
which namely Software Defined Networking (SDN) has 
approached a significant shift in its underlay hardware 
structure. Over past years a protocol-independent switch 
architecture (PISA) has made its way to both academical 
research and commercial products. PISA enables network 
equipment re-programmability. Turning SDN functionality 
development from proprietary vendor provision to an open-
source device administrator driven task [1]. 

Service function chaining (SFC) is data traffic steering 
concept with objective on differentiating packet processing 
without modification of underlay network topology [2]. SFC 
gained traction due recent advancement of segment routing. 

Segment routing with MPLS (SR-MPLS) is a routing 
method that uses source routing in combination with MPLS 
for encapsulation enabling reactive SFC initialization [3]. 

In this study we explore mentioned technologies in a 
Mininet emulation environment. We develop program code 
for SFC domain elements for PISA switches with use of 
programmable protocol-independent packet processing (P4) 
language and python program code for topology host nodes 
acting as service functions (SFs). Results show SR-MPLS as 
an adequate choice for SFC encapsulation as it generates 
minimal overhead. SFC length to transmission ratio shows 
insignificant dependency. 

II. RELATED WORKS 

Authors of [4] points out the difference between 
OpenFlow and P4 switches. OpenFlow was introduced to 
program control plane. Thus, switch match-action pipeline 
stayed protocol dependent. P4 however was introduced to 
program data plane and make match-action pipeline 
protocol-independent. Which also allows in our experiment 
to utilize custom SF encapsulation processing. 

Study [5] utilizes P4 registers to store address resolution 
protocol (ARP) information for enablement of autonomous 
forwarding. An ability for self-organization in P4 pipelines 
can reduce information exchange with network controller. 
Our study also reveals a need for control channels between 
SFC enabled P4 switches. 

Authors of [6] propose congestion aware multi-path label 
switching algorithm for detection of elephant flows in data 
center networks. Like our study, P4 ability of customized 
packet processing is used for model development in Mininet. 

Research [7] states that stateful SFs are common in real-
world deployments but rarely does an existing P4 literature 
examines them. We do cover the necessity for use of stateful 
SFs in section VII. 

Authors [8] of study introduce a flexible system for NF 
offloading to P4 switches themselves. Which in SFC 
terminology would be equal to making an SF forwarding 
element do the service functions work. For example, P4 
switch could work as a network address translator. 

Like in our study, authors of [9] also find segment 
routing generated overhead for SFC excessive and propose a 
heuristic algorithm for SF encapsulation compression for 
SR-IPv6 routing. Our proposal of single segment identifier 
(SID) use is applicable either if proactive classification is 
available or path taken by the packet has been reactively 
backtracked as in their study. 

III. PROGRAMMABLE PACKET PROCESSING 

A. SDN packet processing capability provision shift 

 
Fig. 1. Capability provision 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

979-8-3503-5469-0/24/$31.00 ©2024 IEEE



 

 

In legacy as well as in older white switches (e.g. Open 
Virtual Switches) their functionality is coupled to inbuild 
logics and is dependent on vendor upgrade cycles. This type 
of capability provision is bottom up as information about 
available configuration of the switch is gathered from the 
switch itself. It is shown in Fig. 1. 

Programmable packet processing allows to transform 
switch’s functionality according to network administrator’s 
instructions by compiling P4 programs. [10] This type of 
capability provision is called top down as functionality is 
enforced from upper control layer. It is shown in Fig. 1. 

1) PISA architecture building blocks 
PISA architectures building blocks and its derivation into 

applicable switch model is show in Figure 2 where: 

• Parser – Incoming packets evaluation through 
multiple state filter according to its content for further 
processing. States are mechanisms that determine whether to 
continue packet processing or not and with which action to 
proceed. 

• Match and action pipeline – Parsed header content 
match to predefined custom to users’ requirements logic for 
appropriate modification and processing. Memory holds 
users’ predefined logic in table values while arithmetic logic 
unit (ALU) allows for packet header content modification 
actions. 

• Deparser – An exit point where transmittable packet 
is constructed from processed packet headers and original or 
modified payload before its egress from the appropriate 
switch interface. 

Portable switch architecture (PSA) [11] introduces traffic 
manager (TM) building block. TM is responsible for fixed 
functions like packet buffering, reordering, and queuing, etc. 
TM can differentiate between hardware and its working 
principle is hardware vendor defined. V1model is PISA 
derivation implemented in bmv2 software switch of Mininet 
emulator that we used in our experiment. 

 
Fig. 2. PISA model derivation 

IV. SEGMENT ROUTING WITH MPLS 

 
Fig. 3. SR-MPLS example 

Segment routing with MPLS (SR-MPLS) utilizes labels 
as segment identifiers (SIDs). Shown in Fig. 3. is SR-MPLS 
with three possible routes. When original packet enters SR-
MPLS enabled routing domain an encapsulation is pushed on 
top of packet. This encapsulation can consist of a single label 
or label stack. One label is equivalent to one SID. There are 
three types of SIDs: 

• Adjacency SID – used if the packet needs to be 
routed along a very specific path as these SIDs represent 
directly connected neighbors. 

• Node SID – used if the packet needs to be routed to 
a specific network node. 

• Network SID – used if the packet needs to be routed 
to a specific network.  

The encapsulation can be popped upon exiting the SR-
MPLS enabled routing domain. A swap is a composite action 
made from push and pop action combination. Swap is 
performed inside a SR-MPLS domain for when packet path 
consists of multiple stacked labels or if label stacking is 
prohibited and swap is done on each packet hop. 

In Fig. 3. a computer can reach server via use of three 
different SID types. A stack of adjacency SIDs represent 
blue path where SID 101 would be popped before packet 
reached the second router, while SID 102 would be popped 
before packet reached the third router. Although SIDs 203 
and 302 represent different values their path is equivalent 
therefore they can be used interchangeably. 

The difference between SR-MPLS and traditional MPLS 
is that SR-MPLS does not utilize an additional label 
distribution protocol (LDP). Instead, label information is 
exchanged among routers via routing protocol updates. 
Protocols in use are modified versions of Intermediate 
System-to-Intermediate System (IS-IS), Border Gateway 
Protocol (BGP) or Open Shortest Path First (OSPF) [3]. 

V. SERVICE FUNCTION CHAINING 

Service function chaining (SFC) is designed to ease 
network configuration by allowing to steer traffic through 
ordered service function (SF) path without modification of 
underlay network topology. Originally it was introduced by 
Cisco conglomerate alongside a Network Service Header 
(NSH) protocol as applicable SF encapsulation. However, 
SFC quickly grew out of use in virtualized network functions 
and is heavily leveraged in 5G networks as well. 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



 

 

A. SFC placement in SDN conception 

Network configuration policy setup with and without 
SFC thorough SDN structural planes is shown in Figure 4. 
With use of SFC user at a management plane is not required 
to specificly indicate which network elements should data 
traffic cross on its way to destination. It is enough to indicate 
what network functions needs to be in use. It is conroller’s 
task to map requested SFs with underlay network topology. 

 
Fig. 4. SFC among SDN structural planes 

We have examined SFC domain in our previous research 
[12] that can be in use if an in-depth explanatory of SFC 
elements is required. 

B. SF path types 

SF paths differentiate not only with SFs that they contain 
but also with how flows are handled. Three SF path types are 
shown in Figure 5. Service function forwarder (SFF) is SF 
domain element that is used only to forward network traffic 
along the path and does not modify it. SF Path types are: 

1. SFC is applied for one of the data flow directions. 
2. SFC application is asymmetrical for both directions. 
3. SFC application is symmetrical for both directions. 

 
Fig. 5. SFC path types 

We have previously studied paths symmetries effect on 
successful SF application [13]. Symmetrical SFC application 
might be an obligatory for SF chains with stateful SFs in 
them like non-transparent proxies, SIP servers, L7 firewalls. 

C. Proactive SF path policy 

For SFC to work an SF path policy is required. This 
policy holds the rule base of network traffic classification for 
appropriate SF encapsulation application. Proactive SF 
classification process is shown in Fig. 6. 

 
Fig. 6. SF classification process 

Static proactive SF path policy is a rule base set in 
advance of any network traffic arrival by network 
administrator. Main disadvantage of path policy setup 
proactively is that only expected network traffic can be 
classified and enter SFC domain. 

In our research we examined an alternative to proactive 
SF path policy which is reactive policy instantiation.[14] 
Reactive SF path discovery works on try and catch principle 
with utilization of SFC control plane channels for network 
traffic reclassification[15]. With use of reclassification a 
need for proactively set rule base would be eliminated. 

VI. EMULATION SETUP 

A. Network topology 

To investigate working principle of PISA we developed 
an SFC domain shown in Fig. 7. Classifier pushes MPLS 
encapsulation on top of incoming network traffic coming 
from source. SF forwarders steers network traffic according 
to outermost SID in MPLS label stack. Service functions are 
transparent proxies. SF proxy removes bottom of stack label 
for packet to leave SFC domain and is sent to destination. 

 
Fig. 7. Emulated SFC domain 

There are four SF paths shown in Fig. 7. Each path 
differs from one another with their length. SFP1 is special. It 
does not cross any of the SFs, therefore, requires no 
encapsulation as its path matches one provided by underlay 
network topology. Controller is the network element in 
which the proactive SF path policy is stored for redistribution 
to all other network elements. 

Experimental scenario was implemented in Mininet 
network emulator with use of P4-Utils[16]. P4-Utils provides 
not only emulation needed software but also environment 
setup script for dependency installation as well as literature 
and examples of various P4 enabled use cases. 

The underlay network topology of our SFC domain is 
shown in Fig. 8. All switches are behavioral model version 2 
(bmv2) software switches that work according to V1model 
architecture shown in Fig. 2. Switches use loopback interface 
as outbound link to the controller. Data path link bandwidth 
was set to 10Mbits/s. 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



 

 

 
Fig. 8. Underlay network topology 

Network element use was as follows: 

• H1 – Source host (running Iperf as client). 

• H2, H3, H4 – Service Functions (running proxy 
server python program from Fig. 10). 

• S1, S2, S3, S4, S5 – SF forwarding elements 
(running P4 program from Fig. 9). 

• H5 – Destination host (running Iperf as server). 

B. Emulation process 

The designing of emulation setup was a challenging task. 
It required dozens of reruns and misconfiguration fixes. The 
task included not only topology planning in Mininet, but we 
also developed a separate P4 program for SF forwarding 
elements, a python program for service functions and a 
python program for the controller. 

When the network emulation environment was ready, we 
conducted 40 experiments (10 sequential runs for each SF 
path). The emulation process of each run was as follows: 

1. Running network topology program – it starts the 
Mininet command line interface (CLI) along with bmv2 
software switches with the P4 program and controller python 
program. It also starts packet capture on all switch interfaces. 

2. Setting maximum transfer unit parameter for each 
host in topology from Mininet CLI. Lower for hosts 1 and 5, 
and higher for hosts 2, 3, and 4. (SFC underlay network 
topology shown in Fig. 8.). 

3. Running service function program – through Xterm 
terminals on hosts 2, 3, and 4. 

4. Starting Iperf server on host 5 – the TCP port to 
listen on set according to needed path (5565 port – SF path 1, 
5566 port – SF path 2, 5567 port – SF path 3, and 5568 port 
– SF path 4). 

5. Starting Iperf client – we used no additional 
arguments which makes Iperf to test the available throughput 
for 10 seconds with gradually increasing TCP window. 

6. Repeating Iperf client start for 10 iterations. 
7. Collecting network snapshot – making a copy of 

packet captures (each network interface gets a separate 
capture for ingress and egress traffic which makes in total of 
26 captures in this topology). It’s worth mentioning, that 
realistic real-world cases would have way more network 
interfaces which potentially could be divided in sub 
interfaces as virtual local area network (VLAN) technology 
widely used in data center networks. 

8. Repeating previous steps for all SF paths. 

We endured a shortcoming of P4-Utils upon development 
of network emulation setup. The application programming 
interface (API) does not hold any configuration capability of 
host node maximum transfer unit (MTU) parameter. We 
overcame this shortcoming by manually setting MTU values 
for each host in Mininet CLI after topology initialization and 
before running any Iperf. This was needed as Scapy packet 
crafting tool used in SFs did not allow frames bigger than 
MTU of the host. This problem arose due to Iperf utilizing 
maximum of allowed packet size and P4 switches added an 
MPLS label on top of that. Therefore, we needed to limit 
Iperf MTU and rise SFs MTU. 

C. P4 program for SF forwarding elements 

Flow diagram of SF forwarding elements (classifier, SF 
forwarders, and SF proxy) logic is shown in Fig. 9. The logic 
is implemented in program code written in programmable 
protocol-independent packet processing (P4) language [17]. 

As shown in Fig. 9. an incoming packet is examined 
whether it already has an MPLS or not by parsing its ethernet 
header for ethernet header type. If encapsulation is present 
(type 0x8847) packet is matched against SID database and 
forwarded further trough an appropriate egress port. If 
encapsulation is not present, then TCP header is parsed. If 
TCP destination port has a match in proactively setup SF 
classification policy, then an SFC encapsulation is enforced, 
and packet is forwarded further through an appropriate 
egress port. However, if no match in SF classification policy 
is found, then packet is forwarded according to L2 hardware 
address. 

 
Fig. 9. Logic of SF forwarding elements 

D. Python program for service functions 

Flow diagram of service functions logic is show in Fig. 
10. This logic is used in python program run by hosts which 
act as SFs. Main functionality of this program is provided by 
Scapy packet crafting tool [18]. 

On packet arrival it is filtered whether it is MPLS or not. 
Afterwards destination hardware address is examined to 
distinguish whether captured packet is incoming or outgoing. 
If it is incoming only then time to live (TTL) of MPLS and 
IP headers is modified, and outermost label match is done. 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



 

 

We encountered an issue with Scapy as a noticeable drop 
of transmission rate appeared for all paths that crossed SFs. 
After path examination of packet captures, we noticed that 
lots of packets delivered to first SF in path are being lost, 
which causes Iperf to limit its rate. Through online query we 
settled on potential cause being Scapy’s sendp() function 
which opens and closes a socket for each packet. 

 
Fig. 10. Logic of service functions 

VII. RESULTS AND ANALYSIS 

A. Emulation results 

P4-Utils has an in-built functionality of making a packet 
capture of each P4 switch interface. In same time P4-Utils 
also allows active logging for all switches. The combination 
of both abilities can be referred to as network snapshot 
creation. Network snapshots relaxes network troubleshooting 
task as problem solving no longer requires a separate hop at 
the time approach and enables a cross-examination among all 
links. This allowed us to understand the traffic rate problem 
mentioned in the end of previous section. 

As shown in Fig. 8. MPLS encapsulation was globally 
significant and resembled host IP addressing. For example, 
node SID of 103 instructs switch to forward packet in hosts 
with IP 10.0.0.3 direction, SID 104 would be packet 
forwarding to host with IP 10.0.0.4 and so on. 

Service function path 1 (red arrow in Fig. 7.) is packet 
switched by hardware address therefore it gains no SF 
encapsulation as it does not to cross any SFs. This path was 
created to test whether SF classification worked correctly. 

 
Fig. 11. SF path 2 

Service function path 2 (blue arrow in Fig. 7.) is shown 
in Fig. 11. From merging packet captures taken in multiple 
places throughout the topology we were able to track SF 
encapsulation changes along the taken path. Circled with red 
is the SIDs in use. Packet nr. 6. and 13. shows that original 
packet enters and exits SFC domain with no encapsulation. 
From the TTL we can see that the path is 8 hops long. It’s 
also evident that L2 hardware addressing gets modified but 
L3 logical does not. 

 
Fig. 12. SF path 3 

Service function path 3 (green arrow in Fig. 7.) is shown 
in Fig. 12. This path is 10 hops long. It’s also more evident 
that the L2 addressing changes occur according to next host 
node in SF path on its egress. The same logic is used for 
MPLS label stack, but the pop happens before the SF ingress. 
For example, at nr. 21. packet enters SF1 with L2 destination 
address 00:00:0a:00:00:02 that is equal to SF1 interfaces 
hardware address but label with SID 102 has been popped by 
the previous SFC element SFF1. The remaining SF 
encapsulation with the outermost label containing SID 104 
tells SF1 and next SFC element along the path that packet 
needs to be routed to SF3. 

 
Fig. 13. SF path 4 

Service function path 3 (yellow arrow in Fig. 7.) is shown 
in Fig. 13. This path is 12 hops long. Source routing is most 
evident in this route as the original packet gains a four SID 
long MPLS label stack at the encapsulation. The label stack 
slowly depletes as packet crosses all three SFs. Its worth to 
note that, the encapsulation stacks length in this experiment 
is directly related to the network topology that is being 
emulated. 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



 

 

TABLE I.  TCP DOWNSTREAM CONNECTION PARAMETERS 

Nr. Measurement Path 1 Path 2 Path 3 Path 4 

1. Avg. pkt rate, [pps] 138.2 37.8 38.2 39.7 

2. Avg. bitrate [Kb/s] 9924 1490 1438 1451 

Table I shows data transmission rate. Iperf downstream 
flow is the one going from client to server as it contains the 
payload with data. Path 1 shows that Mininet bandwidth 
parameter set to 10Mbit/s was working accordingly and 
packet switching had insignificant effect on the transmission. 

TABLE II.  SERVICE FUNCTION INPUT / OUTPUT PACKET COUNT 

Nr. SFC Path 
SF 1 SF 2 SF 3 

Rx Tx Rx Tx Rx Tx 

1. Path 2 - - 3012 2641 - - 

2. Path 3 3200 2828 - - 2828 2826 

3. Path 4 3223 2895 2895 2895 2895 2892 

Table II shows received (Rx) and transmitted (Tx) packet 
count difference for each SF and each path. It is evident that 
packet rate decrees occur at the first crossed SF in each path. 
For example, Path 2 crosses only service function 2 and the 
Rx packet count is much bigger than the Tx packet count. 

The difference in I/O packet count likely is a cause of the 
significant data transmission rate difference between path 1 
and rest of the paths shown in Table I. As mentioned earlier 
rate limiting occurs due to working principle of Scapy tool. 

We have studied Intent-based networking (IBN) structure 
and supposed working principle [19]. In IBN network 
control and maintenance is achieved with human to artificial 
intelligence (AI) dialog. It is suggested that AI and machine 
learning (ML) can utilize network snapshots as network state 
monitoring mechanism for pre and post configuration 
change. In the current experiment network snapshot aided in 
troubleshooting of data transmission rate problem. 

TABLE III.  SF ENCAPSUALTION OVERHEAD 

Nr. 
MPLS Overhead for TCP downstream connection [bits/s] 

SFC Path CL > SF 1 > SF 2 > SF 3 > Avg. 

1. Path 2 1551 - 685 - 1118 

2. Path 3 2237 1327 - 663 1409 

3. Path 4 2928 1994 1328 663 1728 

Table III shows SF encapsulation overhead in bits per 
second. At the beginning of each path the overhead is much 
larger than that at the end. This is the effect of source routing 
working principle of SR-MPLS. The classifier must attach 
all necessary SIDs to the original packet for it to be steered 
along the desired path. Before each SF an SF forwarder (SF) 
pops outermost label containing the adjacent SFs SID. 

B. Conducted analysis 

From the gained results shown in previous section we 
conducted an analysis with use of Octave. Values shown in 
Table I and Table III of results are mean values calculated 
from 10 iterations for each path with mean function. 

Shown in Fig. 14, Fig. 15., and Fig. 16. measured value 
points at SFC path lengths 8, 10, and 12 corresponds to path 
2, path 3, and path 4 respectively. SF path 1 was not included 
in the analyses as it did not utilize SR-MPLS routing.  

Calculation of encapsulation overhead to path length 
dependency shown in Fig. 14 was done as follows: 

1. Creating a vector of MPLS header overhead in bits 
per second for each path – data source is analyses of protocol 
hierarchy with Wireshark for each network snapshot. 

2. Calculating of mean values from made vectors with 
mean function. 

3. Calculating standard deviation values from vectors 
made in point 1. with std function. 

4. Creating a vector for x axis of values of 6 to 14 with 
step 1 with use of linespace function. 

5. Creating coefficients of linear regression according 
to formula (1) from mean points and path lengths 
respectively with use of polyfit function with curve value 1. 

6. Creating a linear regression vector from mean 
values and x axis vectors with polyval function. 

7. Plotting measured values with use of errorbar 
function and linear regression with use of plot function in 
single figure. 

Similar methodology was repeated for graphs in Figures 
15. and 16. Data source for those were network snapshot 
analyses of endpoint conversations through Wireshark. 

Linear regression formula (1) is as follows: 

 a * x + b = y (1) 

In this study x represents SF path length in hops for all 
graphs, y represents measured values for each graph 
respectively, but coefficients a and b are regressions slope 
determining factor calculated with use of polyfit and polyval 
functions. 

 
Fig. 14. Encapsulation overhead dependency 

SF encapsulation (MPLS labels representing node SIDs) 
overhead to SF path length (hop count packet takes in SFC 
domain) dependency is shown in Fig. 14. 

Calculated linear regression shows that encapsulation 
overhead rises with the path length.  Path with 8 hops has 
overhead of approximately 1000 bits per second (bps), but a 
path with 12 hops has overhead of approximately 1700 bps. 
This corresponds to 175 bps increase per hop in emulated 
topology. 

An increase is brought in by routing mechanism in use - 
SR-MPLS. Segment routing uses combination of source 
routing and MPLS encapsulation. Encapsulation amount 
required depends on paths complexity. All path’s description 
must be added to the original packet at its ingress in SFC 
domain for source routing to work. 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



 

 

To eliminate overheads dependency of paths complexity 
in any topology we propose a use of a single segment ID for 
each SF path. This could potentially lead to use of hierarchy 
structured SIDs. 

 
Fig. 15. Packet rate dependency 

Packet rate of TCP downstream in packets per second 
(pps) to SF path length dependency is shown in Fig. 15. 

Calculated linear regression shows a packet rate increase 
with longer SF paths. Packet rate is approximately 38 pps for 
path of 8 hops and approximately 40 pps for path of 12 hops. 
This corresponds to 0.5 pps increase per hop in emulated 
topology. 

The packet per second increases was due to 1. SF path 
type shown in Fig. 5. in use. As the SFs were a transparent 
proxy servers, they were stateless and held no need for the 
return (upstream) TCP flow to cross them. 

The affected element of flow asymmetry was TCP 
window. The source and destination nodes unsuccessfully 
tried for multiple times to arrange a window upscale. So, 
having more configuration dialog with no payload to carry 
allude to a slight packet rate increase with no added value. 

To avoid the unwanted dialog, we propose use of more 
granular network traffic classification. For example, 
enforcing 3. SF path type (shown in Fig. 5.) to be in use for 
bidirectional communication, and 2. SF path type for use of 
one-way communication. 

 
Fig. 16. Bitrate dependency 

Bitrate of TCP downstream in kilobits per second (kbps) 
to SF paths length dependency is shown in Fig. 16. Measured 
values show mean points from 10 measurements with a 
standard deviation. Extremes show maximum of the 
achieved bitrate among same 10 measurements. 

Although the calculated linear regression suggests a 
steady slope downwards, having both extremes and mean 
value points not following the pattern makes a contradiction. 

Bitrate below 1450 kbps for 10 hop long path is the 
lowest among measured values. Value in this graph can be 
explained by cross-examining graphs in Fig. 14. and Fig. 15. 
A common culprit of 10 hop path falling out of linear 
regression is observable. 

The observed occurrence is explainable by having two 
parameters change among emulated paths where one is paths 
length change, while the other is count of crossed SFs. 
Although, both are directly proportional (8 hop path visits 1 
SF, 10 hop path visits 2 SFs, and 12 hop path visits 3 SFs), 
having a multiple parameter change does complexes 
measurement relation linearity. 

Therefore, the uneven bitrate drop is an outcome of both 
multiple parameters change among paths and TCP window 
fluctuations discussed under packet rate analyses. 

For a more precise performance evaluations, we suggest 
conduction of fine-grained comparisons. For example, path 
difference on a single parameter change. 

C. Future work 

The development did not go without cutting corners: 

• The network traffic classification does not reach all 
SFC elements. Only the classifier (CL in Fig. 7. and s1 in 
Fig. 8.) can utilize it. This leaves no option for network 
traffic reclassification. 

• The forwarding tables are filled statistically and 
designed only for emulated topology (Fig. 8). This strains the 
reusability of our research. 

• Even though we succeeded in writing the P4 
program code in a way that it is independent from any 
specific network path descriptors (IP addressing, MAC 
addressing, segment IDs e. c.), still for egress control we 
used an action with no tables. That might not be a correct 
implementation and does requires a revision. 

• SF python program also uses try catch as a 
condition statement for label stack parsing which also should 
be revisited in future iterations. 

• The communication with the controller was through 
localhost. A more realistic network models would require 
inbound communication. 

An exploration of fundamental characteristics is only a 
groundwork for a more sophisticated analysis of following: 

• Reactive SF path classification implementation – 
the ability to reclassify network traffic if the SF it’s directed 
at is not fit to fulfil the desired service. 

• Path SID forwarding – the ability to map whole 
path packet needs to be steered along with utilization of a 
single SID. This could potentially also allow structurization 
of SID hierarchy. 

• SFC control channel implementation – enabling 
informational message exchange among all SFC elements 
and the control plane. 

• Comprehensive evaluations – a fin-grained division 
between SF paths should be implemented. SFs individual 
shortcomings should be excluded from overall SF path 
analysis. 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



 

 

CONCLUSION 

We used Mininet network emulator with P4-Utils and 
Scapy to create an emulation environment. This required 
development of program code in P4 and python languages. 
We made developed code available through GitHub [20]. 

Analysis shows that SR-MPLS does create a minimal 
overhead of 2.5 kbps for a flow of 1451 kbps that constitutes 
to a ratio of 1/580. 

Analysis also revealed that a longer SF path does not 
contribute to a significant packet drop. As path with 8 hops 
runs at a rate of 1500 kbps and one with 12 hops runs at a 
rate of 1450 kbps making a drop of 12.5 kbps per hop. Thus, 
bitrate drop ratio is 1/120. 

To limit encapsulation dependency on path length we 
propose use of a single SID describing the whole path in 
contrary of using label stack made from node, network, and 
adjacency SIDs. 

We also propose to direct bidirectional communications 
both flows via same path to avoid inconsistency in path 
parameter configuration. 

REFERENCES 

[1] E. F. Kfoury, J. Crichigno and E. Bou-Harb, "An Exhaustive Survey 
on P4 Programmable Data Plane Switches: Taxonomy, Applications, 
Challenges, and Future Trends," in IEEE Access, vol. 9, pp. 87094-
87155, 2021 

[2] J. Halpern and C. Pignataro, “Service Function Chaining (SFC) 
Architecture”, RFC 7665, DOI 10.17487/RFC7665, October 2015, 
Available: https://www.rfc-editor.org/info/rfc7665 

[3] P. L. Ventre et al., "Segment Routing: A Comprehensive Survey of 
Research Activities, Standardization Efforts, and Implementation 
Results," in IEEE Communications Surveys & Tutorials, vol. 23, no. 
1, pp. 182-221, Firstquarter 2021 

[4] Z. Liu, P. Cui, Y. Hu, Y. Dong, K. Tang and L. Xue, "A 
programmable data plane that supports definable computing," 2021 
International Conference on Advanced Computing and Endogenous 
Security, Nanjing, China, 2022 

[5] J. Alvarez-Horcajo, I. Martínez-Yelmo, D. Lopez-Pajares, J. A. Carral 
and M. Savi, "A Hybrid SDN Switch Based on Standard P4 Code," in 
IEEE Communications Letters, vol. 25, no. 5, pp. 1482-1485, May 
2021 

[6] Y. -K. Chang, H. -Y. Wang and Y. -H. Lin, "A Congestion Aware 
Multi-Path Label Switching in Data Centers Using Programmable 

Switches," 2021 IEEE International Conference on Networking, 
Architecture and Storage (NAS), Riverside, CA, USA, 2021 

[7] X. Zhang, L. Cui, F. P. Tso and W. Jia, "Compiling Service Function 
Chains via Fine-Grained Composition in the Programmable Data 
Plane," in IEEE Transactions on Services Computing, vol. 16, no. 4, 
pp. 2490-2502, 1 July-Aug. 2023 

[8] J. Ma, S. Xie and J. Zhao, "Flexible Offloading of Service Function 
Chains to Programmable Switches," in IEEE Transactions on Services 
Computing, vol. 16, no. 2, pp. 1198-1211, 1 March-April 2023 

[9] Y. Wang, X. Zhang, L. Fan, S. Yu and R. Lin, "Segment Routing 
Optimization for VNF Chaining," ICC 2019 - 2019 IEEE 
International Conference on Communications (ICC), Shanghai, 
China, 2019 

[10] Noa Zilberman at University of Cambridge, P4 Tutorial Welcome, 
[Online] Available: 
https://github.com/p4lang/tutorials/blob/master/P4_tutorial.pdf, last 
viewd June 2024 

[11] P4.org Architecture Working Group, Portable switch architecture, 
[Online] Available: https://p4.org/p4-spec/docs/PSA-v1.1.0.html, last 
viewed June 2024 

[12] M. Mihaeljans and A. Skrastins, "Network Topology-aware Service 
Function Chaining in Software Defined Network," 2020 28th 
Telecommunications Forum (TELFOR), Belgrade, Serbia, 2020 

[13] M. Mihaeljans and A. Skrastins, "Evaluation of reactive service 
function path discovery in symmetrical environment," Telfor Journal, 
vol. 14, no. 1, pp. 2-7, 2022 

[14] M. Mihaeljans and A. Skrastins, "Reactive Service Function Path 
Discovery Approach in Software Defined Network," 2021 29th 
Telecommunications Forum (TELFOR), Belgrade, Serbia, 2021 

[15] M. Boucadair, “Service Function Chaining (SFC) Control Plane 
Components & Requirements,” draft-ietf-sfc-control-plane-08 
(Informational), October 2016. 

[16] Networked Systems Group at ETH Zürich, P4-Utils, [online] 
Available: https://nsg-ethz.github.io/p4-utils/, last viewed June 2024 

[17] P4 Language Consortium, P4 Language Specification, [Online] 
Available: https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html, last 
viewed June 2024 

[18] P. Biondi, Scapy, [online] Available: https://scapy.readthedocs.io/, 
last viewed June 2024 

[19] A. Clemm, L. Ciavaglia, and L. Z. Granville, "Intent-Based 
Networking - Concepts and Definitions," IRTF RFC 9315, 2022 

[20] M. Mihaeljans and A. Skrastins, Program code used in this study, 
[Online], Available: https://github.com/MartinsMihaeljans/SFC-on-
P4/tree/main, last  viewed June 2024 

 

 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)




