
Variance-Preserving Stochastic Differential Equation
Algorithm for the Traveling Salesman Problem

Yuchen Wang∗ and Hiroyuki Ebara†
∗Graduate School of Science and Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka, 564-8680 Japan

Email: k595345@kansai-u.ac.jp
†Faculty of Engineering Science, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka, 564-8680 Japan

Email: ebara@kansai-u.ac.jp

Abstract—The traveling salesman problem (TSP) stands as a
classic combinatorial optimization problem with widespread re-
search interest and practical relevance. Despite its computational
complexities, recent advancements in deep learning and stochastic
differential equations (SDE) have introduced new methodologies
to improve TSP solutions. In this study, we introduce the vertex-
conditioned forward path generation (V-FPG) method, building
upon the variational path sampling with differential equations
(VPSDE) framework. V-FPG integrates urban vertex graphs with
optimal path datas, utilizing SDEs and Gaussian noise to generate
candidate paths. Backward optimization with a scoring function
ensures clear guidance during path generation. Experimental
results demonstrate the superior accuracy and robustness of our
method across random point tests and the TSP-LIB dataset.

Index Terms—Combinatorial Optimization, Deep Learning,
Generative Models, Diffusion Models

I. INTRODUCTION

The traveling salesman problem (TSP), a classic problem in
combinatorial optimization, holds significant value in various
practical applications. As illustrated in Fig. 1, given a set of
cities and the distances (or costs) between them, the task of
the salesman is to find the shortest path that allows him to
depart from the starting city, visit each city exactly once, and
return to the starting city, while minimizing the total length
of the path. In particular, TSP whose vertices are on a 2-
dimensional Euclidean plane and whose cost of each edge is
represented by the Euclidean distance between two cities is
called 2D Euclidean TSP.

Fig. 1: Example of a solution for TSP.

While TSP finds widespread applications, its computational
complexity exponentially rises with increasing problem size.
This computational burden presents significant challenges in

efficiently finding optimal or near-optimal solutions. Deep
learning and generative models have demonstrated immense
potential in addressing combinatorial optimization problems.
Diffusion models, an emerging class of generative models,
have achieved remarkable results in fields such as image syn-
thesis and text generation. Unique in their ability to generate
complex data distributions from simple noise distributions,
they offer an innovative approach to tackle TSP.

To overcome the inefficiency challenges of solving large-
scale TSP instances, this paper proposes a method that com-
bines diffusion models with good edge distribution to solve
TSP. We design a novel optimization framework based on
diffusion models, leveraging the good edge distribution gener-
ated by the diffusion model to guide the TSP search process.
This approach aims to improve the efficiency and quality of
TSP solutions, providing a new perspective for solving TSP
instances.

II. PRIOR RESEARCH

A. Traditional Algorithms for TSP

Since its inception, TSP has garnered extensive research
attention. Traditional methods primarily focus on exact solving
algorithms, such as branch and bound [1] which systematically
explores the solution space by partitioning it into smaller
subspaces. Another notable method is branch and cut [2],
which combines the branch and bound framework with cutting
planes to enhance solution quality.

Furthermore, various heuristic algorithms have been re-
searched for solving TSP. Such as genetic algorithms [3], sim-
ulated annealing [4], tabu search [5], and the Lin-Kernighan
algorithm [6]. These algorithms face challenges such as
high computational complexity and inefficiency for large-scale
problems.

Genetic algorithms [3] simulate the process of natural selec-
tion to evolve a population of potential solutions towards better
solutions over successive generations . Simulated annealing
[4] mimics the process of annealing in metallurgy, gradually
decreasing the temperature to explore the solution space and
escape local optima. Tabu employs memory structures to
prevent revisiting previously explored solutions, guiding the
search towards promising regions of the solution space .
The Lin-Kernighan algorithm [6] is an iterative improvement

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

979-8-3503-5469-0/24/$31.00 ©2024 IEEE

heuristic that seeks to iteratively improve upon an initial
solution by performing local search operations.

While these methods are not guaranteed to find the optimal
solution, they offer efficient approximations for solving large-
scale TSP instances. Each algorithm has its own strengths
and limitations, contributing to the diverse landscape of TSP
solving techniques.

B. Machine Learning for TSP

In recent years, with the development of machine learning
and deep learning technologies, new solving methods have
gained attention. Convolutional neural networks (CNNs) [7]
and reinforcement learning [8], successful in image processing
and pattern recognition, have also been applied to TSP solving.
By transforming TSP into an image form, CNNs can learn spe-
cific patterns in images and generate corresponding solutions.
However, these methods exhibit limited performance when
dealing with complex and large-scale instances. Generative
adversarial networks (GANs) [9], known for their prowess in
image generation tasks, have been tried for generating TSP
solutions [10]. While GANs generate new samples by learning
data distributions, they may face challenges in generating
feasible or suboptimal solutions for TSP. Transformers, cel-
ebrated for their success in natural language processing, have
also been explored for TSP [11]. Transformers capture depen-
dencies in sequence data through self-attention mechanisms,
but their performance and efficiency in tackling combinatorial
optimization problems still require enhancement. Pix2Pix [12]
an image-to-image translation model primarily used for tasks
like image restoration and colorization [13], has been explored
in the context of TSP. In this framework, the generator network
transforms images from one domain to another, while the dis-
criminator network distinguishes between real and generated
images. Through paired examples of input and output images,
Pix2Pix effectively learns to translate images while preserving
essential features.Tang et al. [14] proposed a method based
on conditional generative adversarial networks for solving
TSP. Despite the new solving approaches offered by machine
learning methods, challenges persist in practical applications.
Traditional machine learning methods often require extensive
labeled data and substantial computational resources. This not
only increases the complexity of the problem but also limits
the interpretability of these models, making it difficult to
explain the process of generating solutions to users. Further-
more, these methods may prove inadequate when handling
TSP instances of varying scales and structures.

C. Diffusion model for TSP

To overcome these limitations, diffusion models have
garnered attention, especially in generating complex high-
dimensional data like images, sounds, and text. They originate
from simple noise distributions and progressively approximate
target data distributions, facilitating data generation [15]. In the
field of image generation, diffusion models not only produce
high-quality, clear images but also capture rich details. Given
the limitations of traditional machine learning methods and

the strengths of diffusion models, we propose employing the
variance preserving stochastic differential equation (VPSDE)
method for solving TSP. This method aims to enhance the ac-
curacy of TSP solutions while maintaining a balance between
model interpretability and efficiency.

The VPSDE method combines the strengths of stochastic
differential equations and diffusion models, effectively han-
dling TSP of different scales and structures while maintaining
solution quality and stability [16]. Compared to GANs, dif-
fusion models typically offer more stable and straightforward
training. They do not require adversarial training between a
generator and discriminator, reducing the likelihood of mode
collapse during training. Due to the absence of adversarial
training, diffusion models are generally less susceptible to
mode collapse and can generate more diverse and rich so-
lutions. They typically generate high-quality solutions with
fewer training steps, enhancing efficiency in solving TSP
instances.

The VPSDE method not only effectively handles large-scale
TSP but also offers good interpretability and explainability.
The model’s generation process is stepwise, with each step
improving the sample by introducing a small amount of
noise and enhancing the edge distribution [17]. This stepwise
improvement aids the model in more effectively capturing data
distribution characteristics, allowing users to better understand
how the model generates solutions and thereby producing
higher-quality TSP solutions. Compared to discrete training
processes, stochastic differential equations (SDE) offer a
smoother and more continuous generation method, contribut-
ing to the model’s ability to produce more continuous and
natural solutions. The VPSDE method exhibits robustness,
tolerating noise and uncertainty well. In summary, the VPSDE
method offer a new perspective for solving the TSP, with high
application value and research potential.

III. PROPOSED METHOD

Miki et al. proposed a CNN-based method for solving the
planar TSP [18]. They represent TSP vertices and paths as
images, learning the relationship between vertex images and
optimal path images through CNN models. In their method,
as illustrated in Fig. 2, the concept of a good edge distribution
is crucial, representing the likelihood of each edge being
selected as the optimal path. This lays the foundation for our
subsequent optimization methods. In the following sections,
we combine the VPSDE method with the concept of a good
edge distribution to further optimize the TSP solution. Inspired
by Miki et al.’s good edge distribution method, we further
introduce the VPSDE as our main model, aiming to optimize
the good edge distributions of our model further. To train and
optimize the VPSDE model, we design a specific loss function.

A. Good-Edge Value (GEV)

The good-edge value is an approximate measure of whether
an edge (i, j) is included in the optimal path. Edges with
higher GEVs are more likely to be part of the optimal path.
Unlike traditional shortest edge-first methods, the GEV-greedy

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

Fig. 2: Good Edge Distribution

method constructs solutions by prioritizing edges with high
GEVs.
The GEV of an edge (vij) is represented by equation (1).

vij =
1

1 + τij
·
∑Sx

x=1

∑Sy
y=1 f̂(x, y) · lij(x, y)∑Sx

x=1

∑Sy
y=1 lij(x, y)

(1)

Here, τij is the crossover penalty term used to reduce noise
caused by overlapping with other edges. lij(x, y) is an indi-
cator function representing whether edge (i, j) passes through
pixel (x, y).

• EV-greedy method: This method adopts a short edge
priority approach, prioritizing edges with high GEVs
to construct solutions. It selects edges based on their
calculated GEVs estimated using a trained edge model
that predicts the likelihood of each edge being included
in the optimal path.

• EV-2opt Method: The traditional 2-opt method selects
path combinations with shorter lengths by swapping two
edges. In contrast, the EV-2opt method selects paths
based on the high or low GEVs, leaning towards selecting
edges with larger GEVs as neighboring solutions. The
EV-2opt method is a local search algorithm that performs
basic operations by swapping two edges to attempt to
reduce path length. Unlike the traditional 2-opt method,
the EV-2opt method selects edges for swapping based
on GEVs, leaning towards swapping edges with higher
GEVs.

• Combining EV-greedy and EV-2opt Optimization
Methods: Neither the EV-greedy nor the EV-2opt meth-
ods guarantee that selected edges will not cross. To
further improve solution accuracy, after obtaining solu-
tions using EV-greedy or EV-2opt, we incorporate the
traditional 2-opt exploration method, which we refer to
as EV-greedy+2opt and EV-2opt+2opt methods.

B. Vertex-Conditioned Forward Path Generation (V-FPG)

VPSDE leverages the dynamic behavior of stochastic sim-
ulation systems to capture the random characteristics of data.
The model consists of a drift term, describing the average

change of a stochastic process, and a diffusion term, describing
the strength and distribution of randomness. Its primary focus
is maintaining variance characteristics to generate high-quality,
detailed data such as city vertex images in TSP.

To learn the good edge distribution, we train the VPSDE
model to approximate the real data distribution and ensure the
generated good edge distribution image is as close as possible
to the optimal path image. Our core training objective during
this process is to minimize the loss function, which quantifies
the difference between the model’s predictions and the real
data. Therefore, we propose the Vertex-Conditioned Forward
Path Generation (V-FPG) method.

We employ V-FPG to model the mapping between the good
edge distribution and the optimal path. During the training of
the V-FPG model, our focus extends beyond the consistency
between the good edge distribution image generated by the
model and the optimal path image. We also emphasize the
accurate capture of complex relationships in the city vertex
image. To integrate information from the city vertex and the
optimal path image, where the latter represents the shortest
or optimal path between cities, we set clear optimization
constraints for the model. The city vertex image serves as a
condition, guiding path generation to ensure that the generated
paths meet specific optimization criteria. This comprehensive
approach ensures the model receives clear guidance when gen-
erating consideration ensures the model gains clear guidance
when generating paths.

The core still uses SDE to describe system dynamics and
approximates these dynamics through deep learning. SDE
combines differential equations with stochastic processes,
where randomness is introduced by noise terms. Given the
GEV distribution function f(x, y), the stochastic differential
equation is:

dXt = α(t) · b(Xt)dt+ α(t) · σ(Xt)dWt (2)

Here, Xt represents the state at time t, α(t) is a time-
dependent noise coefficient, b(Xt) and σ(Xt) are deterministic
functions corresponding to drift and diffusion terms, respec-
tively, and dWt is the differential of the Brownian motion.
α(t) is a stochastic process used to adjust drift and diffusion
terms, enabling the model to adapt to data dynamics. In the
forward process, the V-FPG model integrates information from
the urban vertex image to generate candidate paths using SDE
and Gaussian noise. In the reverse process, the model uses the
optimal path image as constraints or criteria to optimize these
candidate paths. Compared to traditional SDE and VPSDE
methods solving image generation problems, V-FPG balances
information between these two domains to generate paths that
satisfy both the conditions of the urban vertex image and the
constraints of the optimal path. This balance enables V-FPG
to maintain rationality and stability in path generation, thereby
avoiding unnecessary randomness. Such characteristics are
particularly crucial for solving complex routing problems like
TSP.

Forward Process

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

Fig. 3: V-FPG

Condition: Urban Vertex Image
In the forward process, the condition is the urban vertex

image, which provides information about the order of cities
the traveling salesman needs to visit. This condition, combined
with the current sample xt, jointly influences the sample
generation.

Noise: Gaussian Noise z

During the forward process, Gaussian noise z introduces
randomness and variability. It is combined with the current
sample xt to generate a new sample for the next time step. This
randomness makes the generated samples non-deterministic,
thereby providing the capability to explore potential solutions.
The equation is represented as:

xt+1 = xt + drift ×∆t+ diffusion ×
√
∆t× z (3)

Here drift and diffusion are drift and diffusion terms deter-
mined by the Urban Vertex Image and the current sample xt,
∆t is the time step, and z is the Gaussian noise.

Reverse Process
In TSP, the core task of the reverse process is to optimize the

generated paths to ensure they meet the specific constraints of
TSP, such as visiting each city once, returning to the starting
point, and minimizing the path length. This optimization
process can be achieved by introducing a score function to
find the optimal path. The score function, commonly used in
probability density estimation and latent variable models to
represent the model’s derivative. In probability density estima-
tion, the score function is the derivative of the log probability
density function divided by the probability density function
itself. In deep learning, it is often used in flow models to
represent the gradient of the model’s output. Mathematically,

the score functionscore score is calculated based on time and
the model’s output:

score = ∇x log p(x, t) (4)

Here, log p(x, t) is the logarithm of the probability density
given input x and time t. ∇x denotes the gradient with respect
to x.

Compared to traditional SDE and VPSDE methods, which
typically focus on optimizing the quality of image generation,
our approach concentrates on optimizing the quality and
effectiveness of the TSP path, ensuring the rationality and
shortest distance of the path.

Fig. 4: Loss Function

C. Loss Function
Traditional Loss Function

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

In traditional loss function design, the primary objective
is to ensure that the model accurately predicts the optimal
path for TSP. To achieve this, mean squared error (MSE)
is commonly used as a metric to measure the discrepancy
between the predicted and true paths:

L =
N∑
i=1

||f(xi, yi)− f̂(xi, yi)||2 (5)

Here, f(xi, yi) represents the optimal path, while f̂(xi, yi) is
the model’s predicted GEV path. However, during the forward
path generation, it is essential not only to consider the match
between the predicted and true paths but also to incorporate
the urban vertex image as a condition to guide the path
generation. Such considerations imply that merely evaluating
the discrepancy between predicted and true values may not
fully capture the constraint conditions, potentially leading to
reduced accuracy in constraint judgment by the loss function.

To ensure the model accurately predicts solutions to TSP, we
propose a more comprehensive loss function that combines the
discrepancy between model predictions and target data with
the quality of the edge distribution:

L(modelxy,modelyx, batch) =Lscore(modelxy, x, y)

+Lscore(modelyx, y, x)
(6)

Here Lscore is the function evaluating the score function loss,
defined as:

Lscore(model, img, cond) =

reduce op
(
(score·std img[:,None,None,None]+z)

2
) (7)

Here, score denotes the model’s score for a given condition
cond and perturbed image perturbed img. std img represents
the standard deviation of the input image, and z is noise. We
use reduce op for dimension reduction, which can be mean or
sum, depending on the setting of the ‘reduce mean‘ parameter.

The design of the comprehensive loss function fully con-
siders the role of the urban vertex image in path generation.
This loss function not only quantifies the discrepancy between
the model’s path generation and the optimal path but also
focuses on capturing information from the urban vertex image.
It ensures consistency between the good edge distribution and
the optimal path image while maximizing the utilization of
information within the urban vertex image to improve the
accuracy and efficiency of path generation. Achieving these
goals allows the V-FPG model to leverage its advantages in
complex routing problems.

Moreover, we evaluate the quality of the model’s output
good edge distribution through the score function loss Lscore.
This ensures not only that the paths generated by the model
meet the constraints of TSP but also enhances the accuracy
and robustness of the paths. By considering both path accuracy
and edge distribution quality, our comprehensive loss function
provides a more holistic evaluation of model performance,
thereby effectively optimizing the model and improving its
performance in solving TSP.

IV. EXPERIMENTAL EVALUATION

A. Computer Configuration

For our experiments, we utilized a computer with the
specifications outlined in Table I. Python 3.8 served as the
programming language, complemented by the PyTorch ma-
chine learning library.

TABLE I: Computer Configuration

Component Description
CPU 13th Gen Intel (R) Core (TM) i9-13900KF CPU@3.6GHz
GPU GeForce RTX 3090 Ti 24GB
Main Memory 64 GB
OS Ubuntu 22.04

B. Experimental Setup

Our evaluation rigorously assessed the performance of
diverse solutions across test problem instances. Evaluation
metrics encompassed the total cost of the solution, average
error rate of the solution, and computation time required for
solving.

Initially, we trained the model over 500 learning epochs
and then tested it on 200 randomly selected points. To further
validate the robustness and generality of the model, additional
tests were conducted using the TSP-LIB dataset.

C. Experimental Procedures

• Model Training: Our model was trained over 500 learn-
ing epochs. Each epoch utilized, a set of randomly
generated TSP instance as training data.

• Testing Setup: Following the 500 epochs of training,
tests were conducted on 200 randomly generated TSP
instances. Accuracy assessment was conducted for paths
spanning 20 to 200 cities in each test instance.

• TSP-LIB Dataset Testing: To further validate the ef-
fectiveness and generality of our approach, tests were
conducted on the TSP-LIB dataset, which encompasses
TSP instances of varying scales.

D. Evaluation Metrics

• Path Accuracy: In each test instance, we calculated
the similarity between the model-generated path and the
optimal path. Path accuracy was quantified using the
formula:

Accuracy =
Generated Path Length
Optimal Path Length

× 100[%] (8)

Accuracy was computed across various scales (20-200 cities),
and the mean and standard deviation were reported.

E. Results Analysis

• Random Point Testing: Path accuracy was computed
across 200 randomly generated TSP instances. The results
indicate a high level of accuracy achieved by our method
on these instances.

• TSP-LIB Dataset Testing: On the TSP-LIB dataset, our
method demonstrated commendable performance across
instances of all scales, nearing optimal solutions.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

TABLE II: Average total error rate for random problem instances (%)

Instance Set 2-opt greedy EV-2opt EV-greedy EV-2opt+2-opt EV-greedy+2-opt
rand20-A 3.326 19.288 0.000 0.000 0.000 0.000
rand20-B 0.341 23.175 3.283 0.000 0.000 0.000
rand50-A 6.451 10.464 0.000 0.000 0.000 0.000
rand50-B 5.160 16.071 3.802 0.000 0.465 0.000
rand75-A 5.029 15.727 3.519 0.000 0.236 0.000
rand75-B 6.284 14.547 0.000 0.000 0.000 0.000

rand100-A 7.793 22.424 1.947 0.000 0.143 0.000
rand100-B 7.106 17.708 0.507 0.026 0.000 0.000
rand150-A 6.524 22.786 0.575 0.000 0.041 0.000
rand150-B 7.643 25.941 0.000 0.000 0.000 0.000
rand200-A 8.056 10.643 5.088 12.615 1.287 2.647
rand200-B 7.143 20.441 0.000 0.000 0.000 0.000

TABLE III: Comparison of Average Error Rates with Previous Studies Using TSPLIB (%)

Instance Set 2-opt greedy EV-2opt EV-greedy EV-2opt+2-opt EV-greedy+2-opt Miki’s method
eil51 4.554 16.667 7.747 6.338 1.408 2.582 2.958

berlin52 7.855 31.941 0.264 16.362 0.000 8.539 0.000
st70 4.741 17.037 9.304 7.704 2.785 1.481 0.452
eil76 7.230 10.409 8.364 8.364 3.122 1.859 0.037
pr76 4.944 29.762 15.262 6.718 3.146 1.918 0.265
rat99 6.557 21.222 9.422 18.167 2.502 4.707 1.936

kroA100 6.442 13.688 18.099 11.094 2.213 6.367 0.477
kroB100 6.608 16.585 7.878 3.089 3.501 1.391 0.660
kroC100 6.484 11.133 7.038 4.357 1.207 2.111 0.104
kroD100 5.276 14.812 18.516 21.269 3.633 3.541 0.986
kroE100 6.328 12.588 8.462 7.672 4.211 2.379 2.696

rd100 6.783 16.928 5.965 3.502 2.220 1.466 1.320
Eil101 7.234 24.483 14.452 9.221 3.212 1.272 1.932
lin105 6.445 16.601 6.139 1.739 1.841 1.182 0.807
bier127 8.213 22.398 3.580 1.568 1.044 0.730 2.681
ch130 5.699 28.445 8.186 8.805 2.745 1.718 2.619
ch150 7.655 18.597 4.070 1.057 0.914 0.628 2.500

kroA150 6.495 20.238 4.770 4.464 1.767 2.500 2.672
d198 4.932 20.330 59.930 43.682 3.223 2.972 2.817

kroA200 6.095 17.659 11.335 10.804 4.183 2.268 2.747

Average Error Rate
Tables II and III display error rates of different methods on

test problem instances. It is observed that solutions employing
V-FPG methods, such as EV-2opt+2opt and EVgreedy+2opt,
consistently exhibit lower error rates compared to those us-
ing traditional 2-opt and greedy methods. This suggests a
significant improvement in solution accuracy attributed to the
incorporation of superior edge distribution.

In TSP, Cost typically refers to the total length or total cost
of a tour, which is calculated as the sum of distances between
consecutive vertices:

Cost =
n∑

i=1

distance(i, i+ 1) (9)

Here, n is the number of vertices, and distance(i, i+1) denotes
the distance between vertices i and i + 1. The error rate is
computed using the formula:

Error Rate =
Cost − Optimal Cost

Optimal Cost
(10)

Here, Optimal Cost refers to the cost of the optimal solution,
typically representing the shortest tour length. The error rate
quantifies describes the relative discrepancy between the com-
puted and optimal solutions.

Computation Time

Tables IV and V present the average computation time
required to solve each given problem instance. The time
complexity for edge evaluations, involving operations like line
drawing and multiplication, is O(n2). This complexity results
in increased time as the number of vertices n grows. In our
experiment, we observed that the greedy method, due to its
fewer iterations, exhibits relatively shorter computation time
compared to the 2-opt method. Notably, the 2-opt method
requires the longest computation time among the methods
evaluated. Furthermore, the EV-greedy+2-opt yielded the most
optimal results with significantly reduced computation time
compared to using 2-opt alone. However, as the vertex count
increases in TSP instances, computation time scales propor-
tionally at O(n2), potentially requiring more memory and
processing power.

Comparison with Prior Research
Table II compares the performance of our method with

prior CNN-based solutions [18] on TSPLIB problem instances.
Our method consistently outperforms previous approaches
on nearly all problem instances. Particularly noteworthy is
its outstanding performance and significant improvements,
especially on the TSP-LIB dataset, especially for larger scales.

Due to the structural constraints of CNNs, input-output
image resolutions are typically set at (S1, S2) = (192, 192),
leading to interference between points. In contrast, our method

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

TABLE IV: Average total error rate for random problem instances (sec)

Instance Set 2-opt greedy EV-2opt EV-greedy EV-2opt+2-opt EV-greedy+2-opt
20-A 0.00094 0.00019 0.00086 0.00012 0.00095 0.00020
20-B 0.00107 0.00021 0.00094 0.00011 0.00110 0.00019
50-A 0.02377 0.00050 0.01502 0.00027 0.01557 0.00082
50-B 0.02577 0.00056 0.01474 0.00027 0.01610 0.00081
75-A 0.09686 0.00097 0.04809 0.00045 0.05146 0.00169
75-B 0.10472 0.00152 0.05588 0.00048 0.05715 0.00176

100-A 0.24402 0.00291 0.13515 0.00068 0.13888 0.00291
100-B 0.29787 0.00205 0.14770 0.00070 0.15329 0.00418
150-A 0.95196 0.00437 0.43086 0.00126 0.43654 0.00647
150-B 0.97966 0.00809 0.49073 0.00127 0.49579 0.00630
200-A 2.70270 0.00440 1.16019 0.00683 1.25030 0.13283
200-B 2.53676 0.00893 1.15922 0.00200 1.16822 0.01097

TABLE V: Average total error rate for TSPlib instances (sec)

Instance Set 2-opt greedy EV-2opt EV-greedy EV-2opt+2-opt EV-greedy+2-opt
eil51 0.02249 0.00058 0.01625 0.00027 0.01803 0.00124

berlin52 0.02326 0.00112 0.01777 0.00118 0.01934 0.00666
st70 0.07861 0.00098 0.04994 0.00050 0.05541 0.00520
pr76 0.11403 0.00208 0.04330 0.00060 0.05191 0.00459
eil76 0.09800 0.00119 0.05789 0.00049 0.06344 0.01143
rat99 0.28608 0.00258 0.11783 0.00123 0.13046 0.00608

kroA100 0.29779 0.00202 0.13964 0.00106 0.17269 0.01102
kroB100 0.27490 0.00184 0.14267 0.00067 0.15073 0.00487
kroC100 0.25047 0.00162 0.13769 0.00067 0.15705 0.00733
kroD100 0.28841 0.00235 0.15124 0.00169 0.17384 0.02047
kroE100 0.24842 0.00162 0.13769 0.00069 0.15128 0.01732

rd100 0.25608 0.00227 0.12425 0.00072 0.13330 0.00492
Eil101 0.23288 0.00262 0.16130 0.00241 0.18399 0.02154
lin105 0.33484 0.00296 0.18302 0.00075 0.19525 0.00571
bier127 0.59623 0.00672 0.28693 0.00127 0.32835 0.03213
ch130 0.64602 0.00594 0.28280 0.00410 0.30994 0.04618
ch150 0.99784 0.00389 0.40337 0.00126 0.41845 0.00639

kroA150 1.04023 0.00601 0.48051 0.00124 0.51589 0.02726
d198 2.81523 0.01405 1.03531 0.01220 1.81258 0.56066

kroA200 2.88469 0.00558 1.11072 0.00222 1.26465 0.18209

increases the input-output image resolution to (S1, S2) =
(256, 256). This elevation allows for larger problem scales
and effectively reduces point interference, thereby enhancing
solution accuracy.

V. CONCLUSION

This study introduces a novel method named Vertex-
Conditioned Forward Path Generation (V-FPG), which is
grounded in diffusion models and superior edge distributions.
Our experimental results highlight the pronounced advantages
of V-FPG, particularly in handling large-scale data. Compared
to traditional approaches, V-FPG demonstrates higher accuracy
and enhanced robustness across both random point tests and
the TSP-LIB dataset.

Our research not only confirms the effectiveness of the V-
FPG method, which integrates diffusion models and superior
edge distributions, in solving TSP but also underscores its
potential in managing large-scale instances.

In the future, we intend to expand the application of the
V-FPG method to address larger and more complex combi-
natorial optimization problems. This endeavor will involve
extensive research and optimization of the algorithm to accom-
modate higher-dimensional data and more intricate constraints.
We are confident that with continuous effort and refinement,

the V-FPG method will provide robust and efficient solutions
for a broader range of application scenarios.

ACKNOWLEDGMENT

This research was partly supported by the Information
and Communication Technology Research Group of ORDIST
Kansai University.

REFERENCES

[1] Applegate, D., Bixby, R., Chvátal, V., and Cook, W. (2006). The Trav-
eling Salesman Problem: A Computational Study. Princeton University
Press.

[2] Padberg, M.W., Rinaldi, G. (1991). A Branch-and-Cut Algorithm for
the Resolution of Large-Scale Symmetric Traveling Salesman Problems.
SIAM Rev., 33, 60-100.

[3] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley.

[4] Kirkpatrick, S., Gelatt Jr, C. D., Vecchi, M. P. (1983). Optimization by
simulated annealing. science, 220(4598), 671-680.

[5] Glover, F. (1989). Tabu search—Part I. ORSA Journal on computing,
1(3), 190-206.

[6] Lin, S., Kernighan, B. W. (1973). An effective heuristic algorithm for
the traveling-salesman problem. Operations research, 21(2), 498-516.

[7] Khalil, E., Khalil, M., and Bello, I. (2017). Learning to Travel: Training
Hierarchical LSTM Networks for Vehicle Navigation. In Proceedings of
the 34th International Conference on Machine Learning.

[8] Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016).
Neural Combinatorial Optimization with Reinforcement Learning. arXiv
preprint arXiv:1611.09940.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

[9] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., ... and Bengio, Y. (2014). Generative Adversarial Nets. In
Advances in Neural Information Processing Systems (pp. 2672-2680).

[10] Nazari, M., et al. (2018). Generating Solutions to the Traveling Sales-
person Problem with Generative Adversarial Networks. In Proceedings
of the 35th International Conference on Machine Learning.

[11] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., ... and Polosukhin, I. (2017). Attention is All You Need. In Advances
in Neural Information Processing Systems (pp. 5998-6008).

[12] Khalil, E., Babiloni, F., and El-Bouri, A. (2020). Transformer Networks
for the Traveling Salesman Problem. In Proceedings of the 37th Inter-
national Conference on Machine Learning.

[13] Isola, P., Zhu, J. Y., Zhou, T., and Efros, A. A. (2017). Image-to-Image
Translation with Conditional Adversarial Networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (pp.
1125-1134).

[14] Tang, Y., Gao, J., and Ma, J. (2019). Solving the Traveling Salesman
Problem with Conditional Generative Adversarial Networks. In Proceed-
ings of the 36th International Conference on Machine Learning.

[15] Socher, R., Bengio, Y., and Li, D. (2020). Deep Learning for Graphs.
arXiv preprint arXiv:2005.03675.

[16] Chen, Z., Zhang, H., and Wang, J. (2021). Variance Preserving Stochas-
tic Differential Equation for Combinatorial Optimization. In Proceedings
of the AAAI Conference on Artificial Intelligence.

[17] Wang, L., Zhao, T., and Liu, H. (2022). Explaining Variance Preserv-
ing Stochastic Differential Equation for Traveling Salesman Problem.
Journal of Artificial Intelligence Research.

[18] Miki, S., and Ebara, H.(2018) . Solving the Traveling Salesman Problem
Using Deep Learning (In Japanese). Journal of Information Processing,
vol 60. No.2 651-659 (Feb. 2019)

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

