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Abstract—In the burgeoning domain of the edge-cloud con-
tinuum (ECC), the efficient management of computational tasks
offloaded from mobile devices to edge nodes is paramount. This
paper introduces a Cooperative cOmputation Offloading scheme
for ECC via Latency-aware multi-agent Reinforcement learn-
ing (COOLER), a distributed framework designed to address
the challenges posed by the uncertain load dynamics at edge
nodes. COOLER enables each edge node to autonomously make
offloading decisions, optimizing for non-divisible, delay-sensitive
tasks without prior knowledge of other nodes’ task models and
decisions. By formulating a multi-agent computation offloading
problem, COOLER aims to minimize the expected long-term
latency and task drop ratio. Following the ECC requirements
for seamless task flow both within Edge layer and between
Edge-Cloud layers, COOLER considers that task computation
decisions are three-fold: (i) local computation, (ii) horizontal
offloading to another edge node, or (iii) vertical offloading to
the Cloud. The integration of advanced techniques such as long
short-term memory (LSTM), double deep Q-network (DQN)
and dueling DQN enhances the estimation of long-term costs,
thereby improving decision-making efficacy. Simulation results
demonstrate that COOLER significantly outperforms baseline
offloading algorithms, reducing both the ratio of dropped tasks
and average delay, and better harnessing the processing capacities
of edge nodes.

Index Terms—6G network, deep reinforcement learning, edge
computing, edge-cloud continuum, resource management, task
offloading

I. INTRODUCTION

A. The Edge-Cloud Continuum paradigm

The advent of the Edge-Cloud Continuum (ECC) marks
a transformative era in distributed computing [1], where the
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HORIZON research and innovation programme under grant agreement No
101070177 (https://www.icos-project.eu/).

seamless integration of edge computing and cloud services
fosters a new paradigm of ubiquitous, low-latency, and scal-
able computing [2]. The primary goal of ECC is to leverage
the proximity of edge nodes to end-users, thereby reducing
latency, conserving bandwidth, and enabling real-time data
processing and analytics [3]. Key elements of the ECC ar-
chitecture include edge nodes, cloud data centers, and the or-
chestration layer that manages resources and task distribution.

As we stand on the cusp of the 6G communications
era, expectations are set for unprecedented advancements in
network capabilities, catering to the high demands of time-
sensitive applications and managing the deluge of traffic from
a burgeoning number of IoT devices [4]. The envisioned 6G
network is anticipated to be characterized by ultra-reliable low-
latency communication (URLLC), enhanced mobile broad-
band (eMBB), and massive machine-type communications
(mMTC) across ground, air, and sea [5]. In this context, the
ECC paradigm is poised to play a pivotal role, acting as a
dynamic and adaptive framework capable of meeting these
diverse and intensive computational needs. By intelligently
offloading tasks from the IoT layer to the most appropriate
computational resources, ECC will be instrumental in fulfilling
the latency-sensitive and high-throughput requirements of fu-
ture 6G networks, ensuring seamless connectivity and optimal
performance.

B. Task Offloading in ECC

In this 6G-enabled ECC architecture, task offloading
emerges as a critical mechanism, allowing tasks to be dy-
namically allocated to the most suitable computing layer [6].
This not only optimizes resource utilization but also ensures
that computational demands are met with minimal delay,
which is paramount for time-sensitive applications. Thus, task
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offloading stands at the core of ECC, embodying its goals
of efficiency and responsiveness. Moreover, in the ECC era,
task offloading transcends the confines of traditional vertical
architectures, embracing a hybrid model that facilitates both
vertical and horizontal communication. This shift enables tasks
to flow not only from one layer to another, such as from
the Edge to the Cloud, but also laterally among Edge nodes
themselves. Such a versatile approach allows for a more fluid
distribution of computational loads, optimizing the use of
available resources and enhancing system resilience. It reflects
the evolving requirements of ECC, where the ability to make
swift, decentralized offloading decisions becomes crucial for
maintaining seamless operations across the network’s various
layers.

C. Related Work

Task offloading in the domains of mobile edge and edge-
cloud computing has been the focus of numerous studies [7].
Dinh et al. [8], [9] tackled the problem by proposing an
optimization framework for offloading from a single mobile
device to multiple edge devices, aiming to minimize both
execution latency and energy consumption. Li et al. [10]
addressed the deployment of mobile edge servers using a
clustering approach, significantly reducing average completion
time, power consumption, and overhead in edge server deploy-
ment issues. Ullah et al. [11] employed Deep Reinforcement
Learning (DRL) to optimize offloading and resource allocation
in edge-cloud networks, demonstrating improved resource uti-
lization and task offloading. Liu et al. [12] proposed a fast and
efficient task offloading approach in edge-cloud collaboration
environments, achieving a near-optimal solution with low time
overhead. Lastly, Shu et al. [13] designed a multi-user task
offloading algorithm that supports dividing tasks into subtasks
and offloading them to edge servers to reduce end-to-end task
execution time.

D. Paper Outline and Contributions

The above works collectively underscore the importance
of efficient task offloading mechanisms and highlight the
benefits of leveraging computational resources at the edge.
However, they often rely on the assumption of known task
models and offloading decisions of other nodes, as well as
they consider the conventional vertical task flow, where each
computing task can be vertically transferred across the system
layer. In this work, we propose a Cooperative cOmputation
Offloading scheme for ECC via Latency-aware multi-agent
Reinforcement learning (COOLER). By considering a multi-
server ECC system, COOLER scheme aims to address these
limitations by enabling decentralized offloading decisions
without the knowledge of task models and others’ decisions,
thereby resolving some of the common constraints identified in
the studies. Following COOLER suggestions, each computing
node employs a double and dueling DRL model and targets to
make proper offloading decisions so as to minimize the task
latency and eliminate the task drop probability.

IoT region 1 IoT region K

IoT region 2

EP1
EP2

EPK

Cloud

BS

FH

Local Computing

Vertical Offloading

Horizontal Offloading

Fig. 1. An IoT-Edge-Cloud Continuum system, where IoT regions generate
tasks to be executed by the Edge Points (EPs). Each EP can locally compute
the task or offload it horizontally (or vertically) to another EP (or Cloud).

The key contributions of this work may be summarized as
follows:

• Decentralized and model-free decision-making: The pro-
posed scheme enables edge nodes to autonomously make
offloading decisions, fostering a decentralized approach
that aligns with the dynamic nature of ECC environments.
Also, it does not require extensive knowledge of neither
of task models, nor global observability at the single-
server side of the others’ decisions.

• Hybrid offloading capability: The COOLER model sup-
ports both vertical and horizontal offloading decisions,
adhering to the principles of the ECC by allowing task
flow between- and within- layers of the multi-server
architecture.

• Integration of LSTM/DRL Techniques: LSTM model,
double and dueling DQN techniques are combined to
improve the estimation of long-term costs, enhancing the
offloading decision-making process.

• Numerical validation: Simulation results validate that
COOLER outperforms multiple baseline algorithms, re-
ducing the ratio of dropped tasks and average delay, thus
optimizing the use of processing resources and response
task of ECC.

II. SYSTEM MODEL

In this section, all the modelling components for task
offloading in the ECC are described, including the system
architecture, the task features, the decision process and the
queues that are considered for both computation and forward-
ing of the tasks.

A. System Architecture of ECC

In the proposed IoT-Edge-Cloud network model, depicted
in Fig. 1, we consider a structure with K Edge Points (EPs)
and a single Cloud entity to manage multiple IoT regions. The
Cloud is indexed by K +1, and the EPs identifiers are drawn
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from the set K = {1, 2, . . . ,K}. Each EP k ∈ K is tasked
with processing all applications from its IoT region, with tasks
being non-divisible and requiring complete computation by
either an EP or the Cloud. The burgeoning 6G network traffic
necessitates an adept policy for task computations.

EPs can compute tasks locally, offload them horizontally to
another EP, or vertically to the Cloud, with each task having a
defined timeout period. Decentralized decision-making is fa-
cilitated by a DRL model [14] within each EP, which processes
task features and traffic data to minimize the Task Computation
Latency (TCL) and the Task Throw Rate (TTR). The network
includes M Edge Monitoring Units (EMUs) for monitoring,
with each EMU being in charge of monitoring a cluster of
EPs (M < K). EMUs also manage data transfers between
same-cluster EPs and enable inter-EMU communication for
data sharing across EP clusters. Without loss of generality, a
single-cluster network (M = 1) with multiple EPs is assumed
for the rest of the paper.

We focus on an episode encompassing time slots T =
{1, 2, . . . , T}, each with a duration ∆. Communication is
maintained through wireless links between IoT devices and
base stations, and wired fronthaul (FH) links connect base
stations to their respective EPs, with all EPs linked to the
Cloud via the Internet.

Fig. 2 illustrates the queues located in EPs. Each time
slot begins with a new task arrival at EP k with probability
P . EPs have dual functionality, acting as local computing
nodes or hosting offloaded tasks. An EP k ∈ K has K FIFO
computation queues and one forwarding queue (FQ). The kth

computation queue of EP k is the internal queue (IQ) for local
tasks, while the remaining K − 1 external queues (EQs) host
tasks from other EPs. For example, a task offloaded from EP
j to EP k is placed in jth external queue of EP k. The Cloud
has K external queues for tasks offloaded by each EP. Upon
task completion, the next task is processed or offloaded in the
subsequent time slot.

B. Tasks and Decision Process

In the proposed ECC model, each EP k ∈ K is assigned a
unique task identifier uk(t) ∈ Z+ for tasks arriving at time t ∈
T . Task arrival is indicated by a binary variable xk(t), where
xk(t) = 1 if a new task arrives. The task ID and size, ηk(t),
are set to zero if no task arrives. Task sizes are drawn from
a set H, and each task uk(t) is associated with a processing
density ρk(t) (in CPU cycles per bit) and a timeout index ϕk
(in time slots).

The offloading decision process involves two decision
maker (DM) modules: DM(1) determines whether a task is
computed locally or offloaded, and DM(2) decides the of-
floading destination. The decisions are represented by binary
variables d(1)k (t) and d(2)k,n(t), where d(1)k (t) = 1 indicates local
computation, and d(2)k,n(t) = 1 signifies offloading from EP k
to node n (another EP or Cloud). A task from EP k can be of-
floaded to only one destination, as shown by

∑
n̸=k d

(2)
k,n(t) ≤

1. Finally, a decision tuple Dk(t) =
(
d
(2)
k,n, n

)
encapsulates

ith queue (IQ)

jth queue (EQ)

kth queue (EQ)

Fwrd queue (FQ) Fwrd queue (FQ) Fwrd queue (FQ)

ith queue (EQ)

jth queue (IQ)

kth queue (EQ)

ith queue (EQ)

jth queue (EQ)

kth queue (IQ)

ith queue (EQ)
jth queue (EQ)
kth queue (EQ)

EPkEPjEPi

Task uk(t)Task uj(t)Task ui(t)

Cloud

Fig. 2. The queues inside Edge Points (EPs) and Cloud. Three examples of
the computation path followed by a task that is decided to (i) be executed
locally at EP i (blue path), (ii) be offloaded horizontally from EP j to EP k
(red path), (iii) be offloaded vertically from EP k to Cloud (green path).

the computing destination of task uk(t), where n is the node
ID to which the task is offloaded. For instance, if uj(t) is
offloaded to the Cloud, then Dj(t) =

(
1,K + 1

)
.

C. Computation and Forwarding Queues

1) Internal Queue: The tasks designated for local process-
ing are queued in the FIFO IQ of their respective EP. The
processor unit (CPU) of each EP k, with a fixed capacity
of f IQk Hz, processes these tasks. The completion time slot
ψIQ
k (t) is determined for each task uk(t), with ψIQ

k (t) = 0

if no task is queued at time t. The waiting time wIQ
k (t) is

the duration a task remains in the queue before processing or
being discarded due to timeout.

The waiting time wIQ
k (t) is calculated as the maximum

completion time of previous tasks, ensuring it’s non-negative,
as in the next formula:

wIQ
k (t) = max

{
0,max

t′<t
{ψIQ

k (t′)} − t+ 1

}
(1)

The completion time slot ψIQ
k (t) is the minimum of the time

slot when processing finishes or when the task is dropped due
to timeout, as expressed in the equation:

ψIQ
k (t) = min

{
t+ wIQ

k (t) +
⌈ηk(t) · ρk(t)

f IQk ·∆

⌉
− 1,

t+ ϕk(t)− 1
} (2)

Specifically, the processing start time is t + wIQ
k (t), and

the duration is the ceiling of the task size times processing
density over the CPU capacity and time slot duration, or until
the task’s timeout.
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2) External Queues: Each EP has K−1 EQs for processing
external tasks from the rest EPs. The Cloud has K EQs to
process tasks from all EPs. Thus, the ith EQ i at a node
is the designated offloading destination for tasks from EP i.
Tasks offloaded by EP k and arriving at node n at time t are
queued in the kth EQ at t+1. Each task receives a unique ID
uk,n(t) upon queuing, where t is the time slot of queuing (i.e.
uk,n(t) = uk(t

′ < t).
The size of the task (in bits), ηk,n(t), and the length of the

EQ, lk,n(t), are also defined. An EQ k at node n is active at
time t if it receives a new task or has tasks from the previous
slot. The set of active EQs in node n at time t is An(t) and
contains the indices of the EQs that are non-empty.

Each EP k has another CPU fEQ
k for processing external

tasks, and the Cloud’s CPU is fCloud, with fCloud > fEQ
k ,

∀k ∈ K. The CPU capacity dedicated for external tasks is
equally distributed among active EQs. The length of the kth

EQ at node n is updated as:

lk,n(t) = max
{
0, lk,n(t− 1) + ηk,n(t)−

−mk,n(t)−
∆ · fEQ

k

ρk(t) · |An(t)|

}
,

(3)

where mk,n(t) is the number of bits dropped by the EQ k of
node n at the end of time slot t. Note that, we assumed equal
CPU distribution for fairness purposes, but the model can be
modified to prioritize amongst specific EPs. The processing
capacity depends on the number of active queues and is not
predetermined, but we assumed that EPs are aware of each
other’s external CPU capacities (i.e. CPU capacity of all nodes
is globalized).

3) Forwarding Queue: Each EP has a forwarding queue
operating on a FIFO basis, which stacks the tasks for offload-
ing. When EP k selects a task uk(t) for offloading, FQ is
connected to the destination EQ of another EP or Cloud via a
wired link. The data rates for EP-to-EP (RH ) and EP-to-Cloud
(RV ) communications are constant, with RH > RV .

The waiting time wFQ
k (t) and completion time slot ψFQ

k (t)
for a task in the FQ are defined similarly to the IQ case. The
completion time slot marks when a task is sent or dropped.
The waiting time in the FQ is given by:

wFQ
k (t) = max

{
0,max

t′<t
{ψFQ

k (t′)} − t+ 1

}
(4)

This reflects the time slots a task waits in the FQ, calculated
before deciding the queue placement for uk(t). The comple-
tion time slot ψFQ

k (t) for a task placed in FQ of EP k is
computed using:

ψFQ
k (t) = min

{
t+ wFQ

k (t)+

+
⌈∑
n̸=k

d
(2)
k,n(t) · ηk(t)
Rk,n ·∆

⌉
− 1, t+ ϕk(t)− 1

} (5)

Here, d(2)k,n = 1 if EP k offloads to node n (EP or Cloud).
The completion time slot is the minimum between the time slot
for successful offloading and the task timeout. The offloading
time is the sum of the arrival time slot t, waiting time wFQ

k (t),
and the time to forward the task. The data rate for offloading
the task is Rk,n ∈ {RH , RV }.

III. HYBRID TASK OFFLOADING IN ECC

In this section, we formulate the optimization decision-
making problem for multi-agent decentralized task offloading
in a multi-server ECC system. Next, we outline the proposed
COOLER scheme for finding a sub-optimal solution to this
problem.

A. Problem Formulation

Each EP agent must judiciously choose to process tasks
locally, offload them to another peer EP agent, or send them
up to the Cloud. The crux of this problem lies in devising
a cost function that encapsulates the agents’ objective: to
make offloading decisions that deftly minimize the long-term
computation latency (TCL) and the probability of task drops
(TTR), thereby ensuring efficient and reliable task handling in
a dynamic computational landscape.

At a given time slot t ∈ T , the global system state is
described by the set S = {S1,S2, . . . ,SK}, where Sk ∈ S is
the local state of EP k ∈ K. At a given episode, each EP passes
through a series of states {sk(1), sk(2), . . . , sk(T )}. For a
given time slot t, each EP k observes the local environment
state sk(t) and takes an action ak(t). The action ak(t) causes
a new state sk(t+ 1), whereas a scalar reward rk(t+ 1) that
reflects whether the action was beneficial or not. In specific,
the state, action and reward are defined as follows:

1) State: The state of EP k at time slot t is given by:

sk(t) =
[
ηk(t), w

IQ
k (t), wFQ

k (t), lEQ
k (t− 1),L(t)

]
(6)

where lEQ
k (t − 1) is a row vector that contains the length of

the EQs hosting tasks of EP k at the end of t− 1. Also, L(t)
is a matrix of size W × (K+1) that records the W (lookback
window) previous load values of each computing node (EPs
and Cloud). As load values, we considered the number of
active queues.

2) Action: From a given sk(t), EP k chooses an action as:

ak(t) =
[
d
(1)
k (t),Dk(t)

]
(7)

Evidently from (7), the decision is two-step, meaning that
it is, firstly, decided whether to offload or not and, secondly,
the offloading destination.

3) Reward: Upon taking an action ak(t) from state sk(t),
the reward that is received is given by:
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rk(t) =



0, No task arrived
ψIQ
k (t)− t+ 1, Local processing∑

k ̸=n

d
(2)
k,n(t)

(
ψk,n(τ)− t+ 1

)
, Offloading

C, Task thrown
(8)

It is evident from (8) that the reward function is four-fold,
with each EP receiving (i) zero reward if no task arrived, (ii)
a positive value of the delay for processing the task locally,
(iii) a positive value of the delay for processing the task in
another node, or (iv) a high-valued constant C if the task was
thrown. Note that ψk,n(τ) is the completion time slot of the
offloaded task uk(t), which arrived at the destination EQ k of
node n ∈ K ∪ {K + 1} at time τ > t.

Hence, letting πk denote the policy (i.e. mapping from states
to actions) learned by the DRL agent k ∈ K, the following
optimization problem implies that each DRL agent k targets
an optimal policy π∗

k for minimizing the expected cumulative
(in time) reward:

π∗
k = argmin

πk

E
{∑
t∈T

γt−1 · rk(t)
∣∣∣πk}

subject to: constraints(1) − (5)
(9)

where E{·} is the expectation over the random and dynamic
task arrivals or characteristics, and the others’ decisions. Also,
γ ∈ (0, 1] is the discount factor which scales the future rewards
[15].

B. COOLER Scheme Solution

The COOLER scheme aims to facilitate decentralized task
offloading in the ECC, guaranteeing that the offloading de-
cisions jointly minimize the long-term cost (TCL and TTR).
COOLER considers that EPs act independently, assessing the
system’s state to optimize task handling, aiming to reduce
latency (TCL) and task loss (TTR) simultaneously. Note that
latency is usually correlated with the power consumption
required for executing a task and, thus, COOLER partly
reduces the system’s power consumption.

According to the COOLER scheme, each EP k employs a
DQN which is trained based on the principles of double and
dueling Q-learning [16]. At a given time slot t, the input of the
DQN model k (with parameters θk) is the state sk(t) and the
output is the Q-value of all possible actions a ∈ {0, 1}K+1.
The Q-value of action a of agent k are updated as:

Qk

(
sk(t),a

∣∣∣θk) = Vk

(
sk(t)

∣∣∣θk)+
[
Ak

(
sk(t),a

∣∣∣θk)
− 1

2K+1

∑
a′∈{0,1}K+1

Ak

(
sk(t),a

′
∣∣∣θk)] (10)

where the Q-value is computed as the sum of the state-value
V (·) and the action-advantage value A(·), with the latter being
relative to the mean action-advantage value across all possible
actions. Details on dueling Q-learning can be found in [16].

Algorithm 1 DDDQN Training for COOLER agent k
1: Initialize replay memory D to capacity NR

2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ̂
4: for episode = 1 to NE do
5: Reset the environment and empty all queues
6: for t = 1 to T do
7: With probability ϵ select a random action at
8: otherwise select at = argmaxaQ(st, a; θ)
9: Execute action at and observe rt+1 and st+1

10: Store transition (st, at, rt+1, st+1) in D
11: Sample random minibatch of transitions

(sj , aj , rj+1, sj+1) from D
12: Set yj = rj+1 if episode terminates at step j + 1

else yj = rj+1 + γQ̂(sj+1, argmax
a′

Q(sj+1, a
′); θ̂)

13: Perform a gradient descent step on
(yj −Q(sj , aj ; θ))

2 with respect to θ
14: Every Cclone steps reset Q̂ = Q
15: end for
16: end for
17: Output: Optimal policy π∗

k for action-value function Q

Algorithm 1 outlines training a single-agent of COOLER
scheme using experience replay and double and dueling
DQN (DDDQN), where state transitions are stored as tu-
ples

(
sk(t),ak(t), rk(t + 1), sk(t + 1)

)
in a memory of

NR entries. Over NE episodes and T slots, the agent uses
two neural networks: the action-selecting Q-model with θk,
and the reward-estimating Target Q-model with θ̂k, which
stabilizes learning by providing consistent targets for Q-value
predictions. The Target Q-model’s θ̂n updates less frequently
to maintain stability (every Cclone episodes, Q-model weights
are cloned to target Q-model).

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the COOLER scheme in an ECC system. We first present
the training dynamics and hyperparameter stabilization of the
DRL agents, followed by a comparative analysis with existing
baseline methods.

A. Training the DRL Agents

For the efficient implementation of COOLER, various sys-
tem parameters were set, with a specific focus on fine-tuning
hyperparameters critical to optimizing the multi-agent DRL
scheme. Key among these was the learning rate a, tested at
values a = [10−2, 10−3, 10−4, 10−5, 10−6]. The selection of
the learning rate was instrumental in balancing the speed of
convergence against the stability of the learning process. For
fine-tuning the vale of a, we considered the system parameters
tabulated in Table I.

Fig. 3 illustrates the learning curve of the COOLER scheme
for these different learning rates. Performance metrics such
as Task Completion Latency (TCL) and Task Throw Rate
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TABLE I
SYSTEM AND LEARNING PARAMETERS

Parameter Symbol Value
Task Arrival Probability P 0.4

Horizontal Data Rate RH 10 Mbps
Vertical Data Rate RV 20 Mbps

Task size ηk(t) 2− 5 bits
Task deadline ϕk 10 time slots

Task processing density ρk(t) 0.297 cycles/bit
Number of EPs K 3

CPU frequency in EP’s IQ fIQ
k 2.5 GHz

CPU frequency in EP’s EQs fEQ
k 5 GHz

CPU frequency in Cloud fCloud 30 GHz
Number of Training Episodes NE 12000

Number of Time slots T 100
Time slot duration ∆ 0.1 sec

Discount factor γ 0.8
Q-network hidden layers NL 3× 20 neurons

Optimizer Opt Adam
Loss function L MSE

Update frequency Cclone 2000 iterations
LSTM lookback window W 10 steps

LSTM hidden layers NL 1× 20 neurons
Replay Memory size NR 10000 samples
Task Drop Penalty C 40

Batch size B 64 samples

Fig. 3. Task Computation Latency (left) and Task Throw Rate (right) as a
function of the training episodes for different learning rates a.

(TTR) are plotted, providing insights into how the learning rate
impacts the efficacy and efficiency of task offloading decisions
made by the agents. TCL has been considered negative, thus
the ideal value of TCL is zero. This is the reason why TCL
curve is increasing.

Notably, a learning rate a = 0.0001 emerged as optimal,
achieving a balanced compromise between rapid learning and
minimal overshoot, thereby minimizing both TCL and TTR.
As expected, TCL and TTR show anti-symmetrical pattern,
which means that maximizing TCL corresponds to minimizing
TTR, and vice verca. On average, COOLER results in 8-slot
latency for completing the tasks under this system setting,
which corresponds to around 5% TTR.

To investigate how the scalability of the network and the
intensity of task traffic influence the performance of the
COOLER scheme, Fig. 4 depicts the relationship between TCL
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Fig. 4. Task Computation Latency (TCL) as a function of the number of EPs
(K) for different task probabilities P .

and the number of EPs, alongside varying levels of task arrival
probability P = 0.3, 0.5, 0.7, 0.9.

As depicted, the TCL deteriorates slightly as the number
of EPs increases. This trend suggests that while adding more
EPs potentially increases the computational capacity of the
network, it also introduces greater complexity in coordination
and data transmission among the agents. This complexity
likely results in quite higher delays, particularly as the dis-
tance that data must travel increases, thereby exacerbating the
computation latency.

Moreover, we observed a direct correlation between higher
task arrival probabilities and increased delays. At lower prob-
abilities, the system manages tasks more efficiently, likely due
to lower demands on resource allocation and less frequent
decision-making requirements for the DRL agents. However,
as the task arrival probability escalates, the system becomes in-
creasingly burdened. This burden is manifested in slower task
execution times, highlighting a critical challenge in managing
high volumes of data traffic within the ECC.

B. Comparison with baselines

To evaluate the efficacy of the COOLER scheme, this
subsection compares its performance against five baseline
offloading strategies. These comparisons help underscore the
benefits of the proposed multi-agent DRL approach in manag-
ing task offloading within an ECC system. For the following
simulations, we set the best hyperparameters of Table I (Sec-
tion IV-A) considering K = 9 DRL agents (EPs).

For comparison purposes, we considered the following
baselines:

1) Random: Each EP offloads tasks randomly, choosing to
execute locally, vertically to the cloud, or horizontally to
another EP, each with a probability 1/3. If horizontally
offloaded, the destination EP is selected randomly from
the remaining EPs.
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Fig. 5. Task Computation Latency (TCL) as a function of the task arrival
probability P for different offloading schemes.

2) Full Local: Each EP executes all tasks locally without
offloading.

3) Full Offloading: All tasks are offloaded from the local
EP to a randomly selected destination, either another
EP or the cloud. Round-Robin: Offloading decisions
cycle through all possible destinations, including local
execution, in a fixed order.

4) ULOOF [17]: A task offloading framework for non-
divisible tasks and multi-agent systems, which bases
offloading decisions on capacity estimations from his-
torical data.

Fig. 5 illustrates the TCL as a function of the task ar-
rival probability (0.5 to 0.9). Evidently, Full Local and Full
Offloading schemes yield the poorest TCL across all tested
probabilities, underperforming significantly compared to other
schemes. Notably, COOLER and ULOOF emerge as the top
performers. Interestingly, while COOLER matches ULOOF’s
performance at a task probability of 0.5, it exceeds ULOOF
at higher probabilities (0.6 to 0.9), with the performance gap
widening as task arrival probability increases. This suggests
that COOLER adapts more efficiently to higher task loads,
highlighting its robustness in more demanding scenarios.

Similarly, Fig. 6 presents the TTR as a function of task
arrival probabilities (0.5 to 0.9). The performance rank-
ing among the schemes mirrors the results for TCL, with
COOLER consistently outperforming the baseline approaches,
including ULOOF, particularly at higher task probabilities.
This consistency in performance across both TCL and TTR
metrics underscores COOLER’s superior task handling and
efficiency under varying operational conditions.
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Fig. 6. Task Throw Rate (TTR) as a function of the task arrival probability
P for different offloading schemes.

V. CONCLUSION

A. Summary

This paper presented the COOLER scheme, cooperative
multi-agent framework proposed for efficient task offload-
ing in the ECC. Utilizing latency-aware multi-agent DRL,
COOLER addresses the dynamic and uncertain load charac-
teristics at edge nodes by enabling autonomous offloading
decisions optimized for non-divisible, delay-sensitive tasks.
The COOLER’s integration of LSTM, double DQN, and
dueling DQN (DDDQN) techniques significantly enhances
the accuracy of long-term cost estimations, thus improving
the overall decision-making process. Simulation results have
confirmed that COOLER excels in reducing task completion
latency and task throw rates, substantially outperforming var-
ious baseline strategies. By minimizing expected long-term
latency and the ratio of dropped tasks, COOLER demonstrates
its efficacy in utilizing the computational resources of edge
nodes more effectively and maintaining robust performance
under different task traffic loads.

B. Possible Extensions

There are immediate extensions of the present work, aiming
to enhance and evaluate the COOLER scheme, such as:

1) Interoperability and Cross-Layer Optimization: Future
extensions could explore the interoperability between
different edge computing platforms and cloud services.
Enhancing COOLER to dynamically adapt based on
cross-layer feedback might further optimize latency and
resource utilization across the continuum.

2) Energy Efficiency: Another valuable extension would
be to incorporate energy efficiency metrics into the
COOLER decision-making process. This could involve
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optimizing the trade-off between computation offloading
and energy consumption, particularly crucial for battery-
operated mobile devices.

3) Prioritization-Based Task Execution: Enhancing the
COOLER scheme to include a prioritization mechanism
where computational resources are not uniformly dis-
tributed but allocated based on priority scores of tasks
could significantly optimize performance. This approach
would allow for dynamic prioritization of tasks, where
tasks with higher importance or urgency receive more
computational resources or faster processing times.
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