
A Light Gradient Residual Encoder-Decoder
Network for Multimodal Image Fusion

Muhammad Ishfaq Hussain∗†, Zubia Naz∗, Linh Van Ma∗, Jeonghwan Gwak‡ and Moongu Jeon∗
∗School of Electrical Engineering and Computer Sciene, Gwangju Institute of Science and Technology (GIST), South Korea,

†Department of Software, Korea National University of Transportation, South Korea
‡Large-scale AI Research Group, Korea Institute of Science and Technology Information (KISTI), South Korea

Email: (ishfaqhussain, mgjeon)@gist.ac.kr, (linh.mavan, zubianaz)@gm.gist.ac.kr, jgwak@ut.ac.kr

Abstract—Image fusion combines the complementary traits
of source images into a single output, enhancing both human
visual observation and machine vision perception. The existing
fusion algorithms typically prioritize visual enhancement, often
overlooking the real-time needs for critical surveillance applica-
tions. To address these real-time deployment needs, we present
a compact fusion network for combining infrared and visible
image representations, named Light-weight Fusion (LightFusion).
This network employs incremental semantic integration and
scene recognition accuracy constraints by incorporating three
different bands of images (IR, RGB, and Grayscale) to fuse
the data. Our approach includes a sparse semantic perception
branch that captures critical semantic features, which are then
integrated into the fusion network through a semantic injection
module. This ensures that high-level vision tasks are adequately
addressed. The scene fidelity path ensures that fusion features
preserve all details required to reconstruct the original images.
The importance and applicability of the proposed network are
enhanced by employing an extra input in the form of a grayscale
image, obtained by converting the RGB image for improved
contrast, along with prominent target masks to enhance the
visual quality of the fusion results. Our extensive analysis shows
that the lightweight LightFusion network outperforms existing
methods in both visual quality and semantic integrity, even
under challenging conditions. The source code will be released
at https://github.com/MI-Hussain/LightFusion.

Index Terms—RGB, IR, Fusion, Neural Network

I. INTRODUCTION

With the evolution of diverse sensors, multimodal images
have become increasingly common across various applica-
tion domains. Visible (RGB) and infrared (IR) sensors, in
particular, are extensively used due to their complementary
imaging properties [1], [2], [3]. Visible images capture rich
texture and color information but are heavily affected by
low-light environments [4]. Conversely, IR images convey
thermal information and can clearly delineate objects in poor
lighting conditions, albeit lacking in detailed texture [5],
[6]. Recent studies have concentrated on the feature-level
fusion of visible and IR images to improve performance in
downstream tasks such as object detection [2]. Conventional
RGB-IR object detection techniques often involve the addition
or concatenation of modality-specific features from RGB and
IR images [7]. However, this ”Late fusion” strategy is limited
in effectively combining complementary information, leading
to subpar performance. Alternative ”Halfway fusion” strategies

incorporate interaction modules between different modality
features to enhance fusion, yet they still face challenges
with modality noise and fail to achieve fully complementary
fusion [7], [8], [9]. The cognitive theories such as Treis-
man’s ”Attenuation Theory,” which describes a coarse-to-fine
process of filtering out extraneous information [10], authors
developed an approach starting with the Redundant Spectrum
Removal (RSR) module to filter irrelevant information in the
frequency domain, followed by a fine selection of features for
fusion [10]. [5] introduced a semantic fusion framework called
SeAFusion [5], which incorporates a segmentation model to
enrich semantic information in fused images as a possible
solution. However, such methods may limit the applicability
of fused images to other models and may not perform well
under extreme conditions. Feature-level fusion, which directly
processes multi-modal fusion features without generating a
fused image, has emerged as a prominent solution for ad-
vanced vision tasks. This approach utilizes feature extraction
networks to capture semantic features from source images,
followed by dedicated fusion modules to integrate complemen-
tary representations. Nonetheless, existing feature-level fusion
methods [11] are often designed for specific tasks and require
significant redesign when applied to new backbones like
Transformer and ConvNeXt. Furthermore, these methods do
not fully explore the potential of image-level fusion compared
to feature-level fusion [11], creating a gap in the development
of effective fusion strategies. To address these limitations, we
propose a lightweight neural network sensor fusion network
that efficiently combines data, leveraging the complementary
strengths of visible and IR imaging modalities. This approach
aims to enhance performance in high-level vision tasks while
maintaining efficient computational requirements.

The major points of the work are highlighted below:

• We propose a lightweight network that utilizes a gradient
residual encoder-decoder network to fuse sensor data
from three separate modalities.

• The model was trained on the M3FD dataset [1] and
tested on the TNO [12], MSRS [2], and Camel [13]
datasets for a fair comparison to validate the authenticity
of the proposed work.
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II. RELATED WORK

Traditional image fusion methods emphasize feature ex-
traction and merging through techniques like multi-scale
transforms (e.g., Laplacian pyramid, discrete wavelet), sparse
representation, and subspace-based methods such as princi-
pal component analysis (PCA) [14]. Optimization-based ap-
proaches and hybrid models combining various frameworks
are also explored. Auto-encoder-based methods train networks
to extract and reconstruct features using convolutional layers
and dense blocks, employing different strategies to merge
high-level features. Convolutional neural networks (CNNs)
perform implicit feature extraction, aggregation, and image re-
construction [15], integrating fusion layers within the training
process to optimize hand-crafted fusion procedures. Generative
adversarial networks (GANs) [16] use adversarial loss to
create fused images with rich textures, aiming to enhance
detail information and sharpen edges, though they may face
challenges like mode collapse. The fusion module is essen-
tial for detecting objects using multi-modality sensors. This
section reviews previous learning-based IR and visible image
fusion (IVIF) approaches [1], [2] and relevant benchmarks
needed for learning and empirical evaluation. Deep learning
has made significant progress in low-level vision tasks due to
the powerful nonlinear fitting abilities of multi-layer neural
networks. Initial efforts integrated deep networks into the
IVIF process for feature extraction or weight generation, such
as Liu et al. [1], who cascaded two pre-trained CNNs for
feature and weight learning. End-to-end architectures have also
been developed to produce fused images in one step, like
the residual fusion network by [17], which learns enhanced
features in a common space for structure-consistent results.
Recently, IVIF approaches using GANs have shown promising
results by transforming different distributions into the desired
one. For instance, [18] introduced an adversarial game between
fused and visible images to enhance texture details, although
this method can miss critical IR information. Despite these
advances, current methods struggle to capture the unique char-
acteristics of different imaging types, highlighting the need
for further research. Several benchmarks, such as the TNO
Image Fusion, INO Videos Analytics, OSU Color-Thermal,
RoadScene, and Multispectral datasets [1], [12], [13], have
been developed to support IVIF research, each offering unique
scenarios and challenges for evaluating fusion and detection
tasks.

III. PROPOSED METHODOLOGY

In this work, we propose a novel approach called Light-
Fusion, a simple and lightweight encoder-decoder network
designed to enhance in-depth feature extraction by incorpo-
rating extra attention through triple-band input feeding. The
unique and salient feature of LightFusion that differentiates
it from previous work is its ability to independently process
three different bands IR, RGB, and grayscale. Each band is fed
separately into distinct encoder modules within the network,
allowing for independent and detailed feature extraction from

each input source. The proposed network diagram can be seen
in Fig. 1.

A. Network Architecture

1) Triple-Band Input Feeding: The network architecture is
composed of triple band input feeding from IR, RGB, and
Grayscale from RGB. Each of these bands is processed by
separate encoder modules. This independent processing en-
ables the network to extract unique and in-depth features from
each band independently. The encoders leverage gradient-
based recurrent neural networks (RNNs) to enhance the feature
extraction capabilities further.

2) Encoder Module: Each encoder processes its respective
input band and extracts salient features independently. The use
of RNNs (Light-GRLB) within the encoders helps in capturing
temporal dependencies and enhances feature extraction. The
light gradient residual block is composed of two blocks as
shown in Fig. 2.

3) Fusion Layer: Once the encoding process is complete,
the extracted features from the three bands are concatenated in
the fusion layer. This fusion step combines the rich and diverse
information from the IR, RGB, and grayscale bands, providing
a comprehensive feature set for subsequent processing.

4) Decoder Module: The fused features are then processed
by the decoder module. The decoder reconstructs the image
by retaining the original information while integrating the ad-
ditional insights provided by the IR band. This reconstruction
ensures that the final output is more informative and readable
compared to standalone sensor data.

B. Advantages of LightFusion

1) Late Fusion Technique: The independent processing of
each input band (late fusion) allows the network to learn more
effectively compared to early fusion techniques, where inputs
are combined before feature extraction. This method ensures
that the unique features of each band are preserved and fully
utilized.

2) Enhanced Feature Extraction: The use of gradient-
based RNNs within the encoder modules enables the network
to capture and utilize temporal dependencies, enhancing the
depth and quality of the extracted features.

3) Improved Readability and Information Content: By in-
tegrating IR data, the final output image retains more informa-
tion and is more readable, providing a significant advantage
over using standalone sensor data. In comparison with Early
Fusion, we also experimented with an early fusion approach,
where the inputs were combined before being fed into a single
encoder. However, the results were inferior compared to the
late fusion approach utilized in LightFusion. The independent
processing in the late fusion technique proved to be more
effective in learning and preserving the unique features of each
band.

IV. EXPERIMENTAL SETUP / EXPERIMENTATION

The experiments were performed with PyTorch 2.0.1+cu117
and Python 3.10.13, running on Ubuntu 20.04.6 LTS x86-64.
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Fig. 1. The overall diagram of our proposed light gradient residual-based Encoder-decoder network. Input images used for fusion are RGB, GrayScale, and
IR images. These images are passed through light gradient residuals based on an encoder-decoder network to output a fusion image.

It features an NVIDIA RTX 3090 GPU and an AMD Ryzen 5
5600x 6-Core Processor, providing substantial computational
power for handling complex tasks. The image sizes processed
by the system are 640x480 pixels, with a processing speed
of 10.67 images per second. This setup ensures efficient and
robust performance for various image processing and fusion
tasks.

A. Datasets

The M3FD dataset [1] comprises images collected from
three primary locations: the campus of Dalian University
of Technology, the State Tourism Holiday Resort at Golden
Stone Beach in Dalian, China, and the main roads in Jinzhou
District, Dalian, China. It includes a total of 8,400 images
intended for fusion, detection, and fusion-based detection,
and 600 images from independent scenes for fusion. This
translates to 4,200 image pairs for the first group of tasks
and 300 pairs for the latter. The images are provided in two
formats: 24-bit grayscale bitmaps for IR images and 24-bit
color bitmaps for visible images, with most images sized at
1024 x 768 pixels. All image pairs are registered, with visible
images calibrated using internal system parameters and IR
images artificially distorted using a homography matrix. The
dataset contains 34,407 manually labeled instances across six
categories: People, Car, Bus, Motorcycle, Lamp, and Truck. It
should be noted that some labels may be incorrect or missing
due to manual labeling constraints, and feedback to improve
the dataset is welcomed. For additional testing, we also utilized
the TNO and Camel datasets as well for a fair comparison.
The Multi-Spectral Road Scene (MSRS) dataset [2] comprises
images captured in road scene environments, including both
visible and IR spectral bands. This dataset is designed to
support the development and evaluation of algorithms for
autonomous driving and advanced driver-assistance systems
(ADAS). The MSRS dataset includes a wide range of road
conditions and environments, such as urban, rural, and high-
way scenes, providing a comprehensive testbed for evaluating
fusion techniques in automotive applications. The CAMEL

(Composite Attention-based Multispectral and Hyperspectral
Enhanced Learning) dataset [13] is designed for complex
scene analysis, featuring both multispectral and hyperspectral
images. This dataset contains images from various scenarios,
including urban, rural, and natural environments, captured
under different lighting and weather conditions. The CAMEL
dataset is particularly valuable for research in advanced image
processing techniques, such as hyperspectral image analysis,
and for tasks that require detailed spectral information for
accurate scene interpretation.

B. Pre-processing

The M3FD dataset, consisting of 4200 images, was used
for the fusion task. The dataset was split into training and
validation sets in an 80:20 ratio. Prior to feeding the images
into the network, the image resolution was resized to the
required dimensions (640x480). Additionally, RGB images
were converted to gray-scale to serve as independent inputs
to the network. The network architecture employed in this
work utilizes a late fusion technique, therefore it accepts three
distinct inputs separately. Besides that, before feeding to the
network we need to make sure all the images have the same
resolution.

C. Experimentation’s

The proposed network was trained from scratch using 4200
images over 20 epochs. The performance of the network was
subsequently evaluated on 300 fusion images from the M3FD
dataset [1], TNO dataset [12], MSRS dataset [2], and Camel
dataset [13]. We just trained on M3FD dataset where as we
tested on the other dataset using the pre-trained weights for
M3FD dataset. This rigorous training and testing protocol
ensures a robust comparison of the efficacy and capabilities
of the proposed networks in handling image fusion tasks. For
better understanding and strengthening, the network is trained
with early and late-fusion. During the network training, we
utilized the Adam optimizer whereas the tanh and Leke−relu
are used as activation functions. For the evaluation metrics, we
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Fig. 2. An in-depth explanation of Gradient Residual-based Convolutional Layers (Light-GRLB), illustrating the integration of pointwise (1x1) convolutions
to reduce computational complexity and make the network lightweight while preserving essential gradient features.

utilized concepts such as Mutual Information (MI), Entropy,
Spatial Frequency (SF), Structural Similarity Index Measure
(SSIM), Standard Deviation (SD), Qabf, and VIF. These
metrics are essential in information theory and are used to
quantify and transfer information between images, which is
crucial for tasks such as image denoising, deblurring, and
compression.

Entropy = −
n∑

i=1

pi log2 pi (1)

MI(X;Y ) =
∑

x∈X,y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
(2)

FMI(X,Y ;F ) =
∑
x,y,f

p(x, y, f) log2
p(x, y)

p(x)p(y)
(3)

These equations define entropy as a measure of uncertainty
or randomness in an image, mutual information as a measure
of the amount of information transferred from one random
variable to another, and an expression that relates these con-
cepts within the context of fused images. Two statistical mea-
sures used in image processing are Standard Deviation (SD)
and Spatial Frequency (SF). These measures are important
for analyzing the brightness, contrast, and texture details of
images.

SD =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(I(i, j)− µ)2 (4)

This equation calculates the SD of an image, reflecting its
brightness and contrast variations.

SF =
√
SF 2

row + SF 2
col (5)

SFrow =

√√√√ 1

M(N − 1)

M∑
i=1

N−1∑
j=1

(I(i, j + 1)− I(i, j))2

and

SFcol =

√√√√ 1

(M − 1)N

M−1∑
i=1

N∑
j=1

(I(i+ 1, j)− I(i, j))2

(6)

The Structural Similarity Index Measure (SSIM) is a method
used to assess the quality of images by comparing them to a

reference image in terms of luminance, contrast, and structure.
SSIM is particularly useful in image analysis for measuring
the similarity between two images, which is important for
tasks like image compression, transmission, and denoising.
The following equation calculates the SSIM between two
image patches (XF ) and (YF ), considering the mean values
(µ), standard deviations (σ), and constants (C1) and (C2) to
stabilize the division with weak denominators.

SSIMXF, Y F =
(2µXFµY F + C1)(2σXFY F + C2)

(µ2
XF + µ2

Y F + C1)(σ2
XF + σ2

Y F + C2)

and

SSIMX,V ISUAL+ IR =

∑N
n = 1SSIMXFn,Y Fn

N
(7)

We utilize the semantic loss function in order to train the
network. The semantic loss function for IR and RGB sensor
fusion can be defined as follows:

Lsemantic = α
∑
i

CrossEntropy(LRGB(xi), yi)

+β
∑
i

CrossEntropy(LIR(xi), yi)

+γ
∑
i

∥LRGB(xi)− LIR(xi)∥2

(8)

where: Lsemantic is the overall semantic loss. α, β, and
γ are weights that balance the contributions of each loss
term.CrossEntropy(LRGB(xi), yi) is the cross-entropy loss
for the RGB image at sample i. CrossEntropy(LIR(xi), yi) is
the cross-entropy loss for the IR image at sample i. LRGB(xi)
and LIR(xi) are the predicted labels for the RGB and IR
images at sample i, respectively. yi is the ground truth label
for sample i. ∥LRGB(xi) − LIR(xi)∥2 is the consistency loss
ensuring that the predictions from the RGB and IR images are
similar.

D. Experimental Results

The experimental results are calculated on all the datasets
and compared with the existing methods for a fair comparison.
The qualitative results are shown in Fig. 3. The quantitative
results are compared with different datasets as well. The Table.
I , II, III, IV-D given below highlighted the results on the
M3FD datasets, MSRS Camel and TNO datasets. As we
plan to deploy this fusion technique for surveillance, it is
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Fig. 3. The results of the proposed network on the Camel dataset for three different sequences are shown in this image. As illustrated by the TNO dataset,
the proposed algorithm’s results within the bounding box clearly reveal the window structure compared to other algorithms. Similarly, bounding boxes are
drawn in other sequences to highlight the comparative analysis.

noteworthy that the FPS score is approximately 48 FPS on
the M3FD dataset, which is significantly better than existing
algorithms. Additionally, the algorithm was tested on the
Camel dataset using three sequences (13th, 15th, and 30th).
On this test set, we achieved approximately 90 FPS due to
the lower resolution of the images in the dataset. As per the
qualitative and quantitative results, the results are closer and
even better than the existing algorithms.

TABLE I
QUANTITATIVE RESULTS ON M3FD DATASETS

Dataset: M3FD Infrared-Visible Fusion Dataset [1]
Method EN SD SF MI VIF Qabf SSIM

TarDal [1] 6.98 39.36 - 2.84 - - -
SeAFusion [5] 6.86 35.91 17.01 2.44 0.65 0.58 0.94

LightFusion 7.01 41.08 18.61 2.28 1.79 0.65 0.91

V. CONCLUSION

In conclusion, the Lightweight Fusion (LightFusion) net-
work effectively addresses the shortcomings of existing fusion

TABLE II
QUANTITATIVE RESULTS ON CAMEL DATASETS

Dataset: Camel dataset with sequence (13th / 15th & 30th)
Infrared-Visible Fusion Dataset [13]

Method EN SD SF MI VIF Qabf SSIM
CDDFuse [19] 7.29 39.41 15.59 3.12 0.77 0.63 0.92

LightFusion 7.41 48.45 19.92 2.97 1.51 0.59 0.75

TABLE III
QUANTITATIVE RESULTS ON MSRS DATASET

Dataset: MSRS Infrared-Visible Fusion Dataset [2]
Method EN SD SF MI VIF Qabf SSIM

LightFusion 7.21 44.8 12.81 1.88 1.14 0.62 0.65

algorithms by integrating incremental semantic embeddings
and scene recognition requirements, utilizing three different
bands (IR, RGB, and Grayscale) images. Our novel approach,
which includes a sparse contextual awareness branch and
a semantic injection module, ensures that high-level vision
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Dataset: TNO Infrared-Visible Fusion Dataset [12]
Method EN SD SF MI VIF Qabf SSIM

TarDal [1] 6.94 38.34 11.56 1.49 0.51 0.36 0.89
CDDFuse [19] 7.12 46.00 13.15 2.19 0.77 0.54 1.03

DeF [20] 6.95 38.41 8.21 1.78 0.60 0.42 0.97
DID [21] 6.97 45.12 12.59 1.70 0.60 0.40 0.81
SDN [22] 6.64 32.66 12.05 1.52 0.56 0.44 1.00
ReC [23] 7.10 40.83 13.15 2.19 0.77 0.54 1.03
RFN [24] 6.83 34.50 15.71 1.20 0.51 0.39 0.92
U2F [25] 6.83 34.55 10.57 1.37 0.47 0.31 0.81

LightFusion 7.32 44.54 16.10 2.25 0.77 0.69 0.94

tasks are adequately addressed while preserving all required
information for the reconstruction of the original images.
The introduction of an extra grayscale input, obtained by
converting the RGB image, enhances contrast and salient target
masks, further improving the visual quality of the fusion
results. The LightFusion network was rigorously tested on four
different datasets, and both qualitative and quantitative results
demonstrate superior visual quality and semantic integrity
compared to existing methods, even under challenging condi-
tions. This significant advancement underscores the potential
of LightFusion for a wide range of applications. In the future,
Short-wave infrared(SWIR) and Mid-wave infrared (MWIR)
modalities will be added to enhance the solution’s robustness
in challenging weather conditions.
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