2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

Cobra-5G — an Al-driven Solution for Resilient
Industrial Applications in Private SG Environments

Sebastian Peters*, Fikret Sivrikaya*, Satyatma Winarga Rochadif, Amina Ayadi-Miessen?

*GT-ARC gGmbH, Berlin, Germany — {sebastian.peters, fikret.sivrikaya} @ gt-arc.com
TDAI-Labor, Technische Universitit Berlin, Berlin, Germany — satyatma.rochadi @dai-labor.de

THMF Smart Solutions GmbH, Bad Miinder, Germany — amina.ayadi-miessen @hmf-germany.com

Abstract—The proliferation of private SG networks requires
novel means to support the owner in its operation. This mandates
keeping the 5G network fulfilling the specific application scenario
secure and ensuring an overall resilient deployment. Along these
lines this paper presents a novel NWDAF-based user session
anomaly detection approach, contributing with a blueprint for
the tight coupling of a 5G-based private network deployment with
an example industrial use case. We therefore exploit the prior
knowledge of user sessions in the industrial context and utilize
the metadata exposed by 5G core network functions amending
the open source Open5GS core. We present two ML models
trained on the obtained metadata of PDU session and user traffic
patterns, which showed a high accuracy in detecting anomalies
when fed with our implemented anomaly generator component.

I. INTRODUCTION

The widespread commercial availability of 5G technology -
manifested by a plethora of 5G end-user devices, radio access
infrastructures and 5G core network implementations - has
made it viable to deploy small scale, purpose-built private 5G
networks. In addition, since 5G’s technological foundations are
built on web (Rest API) and cloud technologies (virtualized
network functions), the private 5G network can be easily
dimensioned and deployed to fit the operation to the intended
environment, with the end-to-end communication all being
under the control of the owner of the 5G infrastructure, as
compared to connecting via public Mobile Network Operators
(MNOs). Based on this outlook, market research firms are
expecting high growth rates of private 5G deployments in the
years to come!.

However, in order for these growth expectations to mate-
rialize, we believe that several challenges need to be over-
come. First, it will be challenging, e.g., for the manufacturing
industry unacquainted with 5G technology, to operate and
maintain the private 5G network, as highly specialized staff
- similar to the engineers working in the Network Operations
Center (NOC) of mobile network providers - need to be
hired to ensure the seamless operation across all network
segments from radio access to backend applications. Secondly,
a private 5G deployment needs to support the improvement of
a legacy industrial manufacturing process in order to justify
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the investment. Both challenges may be addressed by i) better
supporting non-expert workers in operation of a private 5G
network, making it a secure and resilient deployment, and
ii) by facilitating a tighter integration of the 5G end-to-end
application with the industrial process, fostering a tailored and
highly specialized private 5G network.

Attacking these challenges is the overall goal of the Cobra-
5G? research project, funded by the German Federal Office
for Information Security (BSI) in the “Cyber Security and
Digital Sovereignty in 5G/6G Communication Technologies”
program.

A. Focus and Contribution

Embedded into the overall Cobra-5G approach, this paper
contributes an Al-driven solution to detect abnormal behavior
of user sessions, utilizing data collected via the Network Data
Analytics Function (NWDAF) from 5G core network functions
and the user plane, feeding it into machine learning models
that are tailored to the industrial application that is executed
on the factory floor. In doing so, this paper contributes with
a blueprint for the tight coupling of a 5G-based private
network deployment with an example industrial use case.
To achieve this, we created an NWDAF implementation to
demonstrate this use case, particularly detecting abnormal UE
traffic patterns by involving two machine learning models to
detect anomalies in UE Protocol Data Unit (PDU) session
statuses and throughput. Based on our approach, we further
contribute with a proposed addition to 3GPP’s definition of
abnormal UE behaviour analytics.

II. COBRA-5G AND 5G BACKGROUND (NWDAF)

The Cobra-5G project aims at gaining new insights into
private 5G networks (also referred to as 5G campus networks
in Germany), bringing partners from research, infrastructure
supplier and system integrator perspectives together to attain
resilient and secure private 5G deployments. Figure 1 shows
the high-level areas covered within the project. In brief,
the Container-based resilient architecture accepts the fact
that private 5G networks are characterized by containerized

Zhttps://www.cobra-5g.de/
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Fig. 1. Overview of the Cobra-5G Project

environments across all network segments from RAN to back-
end, needing protection from physical and cyber attacks and
requiring targeted measures to increase their overall resilience.
To attain this goal, the project pursues a range of Al-based
detection approaches. The focus of this work lies in exploiting
the capabilities of the 5G core network and its network data
analytics function to detect anomalies in the behavior of users
connected to the private 5G network.

A. The Network Data Analytics Function (NWDAF)

The 3GPP has devised the NWDAF as the key network
function to collect and store relevant information pieces of an
end-to-end 5G system, serving as a central instance for arbi-
trary pieces of information provided to Al-based approaches. It
provides analytics, which can be either statistical information
of past events or predictive information, to other Network
Functions (NFs), Application Functions (AF), and Operations,
Administration and Maintenance (OAM). In [1], the 3GPP
standardised the interface for deriving these analytics, de-
tailing the required data, its source, and the corresponding
service to contact. 3GPP Release 17 specifications define
two main functional components that NWDAF instances can
implement: Analytics Logical Function (AnLF) and Model
Training Logical Function (MTLF). While the former provides
support for inference and exposes analytics services, the latter
enables the training of new machine learning models and thus
providing new trained ML models for exposure to other NFs
and AFs. Given the unlimited possibilities of data feeding
into NWDAF, its fundamental perspective goes beyond the
traditional network management systems that facilitate the
operation and maintenance of the deployed network. By taking
this perspective novel Al-driven approaches are enabled to
exploit data that add to the knowledge about 5G networks
and the use cases utilizing them.

In the present work we have extended the relevant network
functions of the Open5GS Core Network with the capabilities
to expose user and session metadata of interest to NWDAF,
in order to facilitate an anomaly detection of potentially

erroneous behavior regarding a specific application, visible
from aberrant user communications.

B. State of the art in NWDAF Abnormal UE Behaviour
Analytics

The NWDAF 3GPP specification [1] (Sec. 6.7.5.1) already
standardizes abnormal traffic patterns as an example of ab-
normal UE behaviour and correspond to “Unexpected long-
live/large rate flows” and the “too frequent service access”
exceptions. However, the abnormal UE behaviour targeted in
this paper, namely irregular PDU session patterns and low
throughput rates do not fit neatly into any of the exception
IDs standardized so far. We therefore propose to introduce
a new exception category: “Unexpected UE Traffic Pattern”.
The expected UE behaviour parameter to be provided would
then be the expected UE traffic pattern. This exception ID may
be particularly relevant for private 5G network deployments,
where operators have detailed knowledge of predictable UE
traffic patterns.

III. RELATED WORK

In this section we present the related work on private 5G
networks in industrial contexts, works involving the Network
Data Analytics Function (NWDAF) as well as those combining
the NWDAF with anomaly detection approaches.

In general private 5G networks address the specific needs
of enterprises across various sectors, including healthcare and
industrial Internet of Things (IIoT) [2]. Typically, these enter-
prises deploy their private 5G networks entirely independent
of public networks to meet stringent QoS requirements and
enable independent network operations [3]. However, one of
the main challenges in private 5G deployments is the lack of
skilled network professionals [2], where increased intelligence
to optimize operations of the network is a potential solution.
In the following we present relevant approaches implementing
the NWDAF and applications of anomaly detection in this
connection.

A. Implementations of the Network Data Analytics Function

In [4] Manias et al. introduced their NWDAF implemen-
tation with a focus on analyzing core network signaling
traffic, emulating a 5G core architecture using Open5GS and
UERANSIM. Within this architecture, each NF operates on
a separate virtual machine, and all internal network traffic is
duplicated and routed to a central host, serving as the pri-
mary hub for NWDAF analytics and operations. The authors
categorized the collected packets based on their originating
and destination NFs and extracted various statistics such
as average packet length, maximum packet length, standard
deviation of packet lengths, and total packet count for each
NF-to-NF interaction. These statistics served as features for
clustering NF-to-NF interactions using different k values.
Notable clusters identified included NF-NF pairs with no
packet exchange, NF-NF pairs with packet exchange, further
subdivided based on maximum packet length, and interactions
involving the NRF. By categorizing NF-to-NF interactions,
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the authors foresee several insights and opportunities, includ-
ing facilitating intelligent networking decisions, implementing
proactive resource allocation strategies based on monitored
NF resource requirements, and constructing network models
for anomaly detection tasks to detect and mitigate abnormal
network conditions. Ultimately, the study aimed to support
Management and Orchestration (MANO) in their decision-
making processes regarding network management and opti-
mization.

Kim et al’s [S] NWDAF implementation comprises both
MTLF and AnLF components. Although the service API
(Nnwdaf AnalyticsInfo) of the AnLF was generated, it remains
partially implemented, allowing the service to accept analytics
requests but providing hardcoded responses. Additionally, their
implementation integrates with FreeSGC, another open-source
5G core network implementation. The data for deriving an-
alytics are collected from the NFs within FreeS5GC and then
forwarded to the MTLF for further processing and training
of machine learning models. However, the specific nature of
the data received by the MTLF from the NFs is currently
undisclosed.

Lee et al.’s [6] NWDAF implementation includes both the
AnLF and MTLF components, with a specific focus on the
Nnwdaf AnalyticsInfo service of the AnLF and the Nnwdaf
MLModelProvision service of the MTLF. The authors demon-
strated the interaction between these two services when a
request for prediction-type analytics is directed to the Nnwdaf
AnalyticsInfo service. In this scenario, the AnLF would re-
quire machine learning (ML) models for inference. If the
required model is unavailable within the AnLF, the NWDAF
containing the AnLF sends a request to the NWDAF contain-
ing the Nnwdaf MLModelProvision service. Subsequently, the
NWDAF with the AnLF receives a URL to the ML model file,
which it then downloads to execute inference and generate
analytics results for the consumer. In this work, this workflow
was not implemented as the Nnwdaf AnalyticsInfo service
solely provides statistics and does not offer predictions on
the number of UEs in a given area of interest. Nevertheless,
the workflow proposed by the authors appears to be the ap-
propriate approach for implementing prediction-type analytics.
However, it is important to note that a 5G core network was not
simulated in their experiments. Therefore, it is unclear where
the data for deriving the analytics originates. Additionally, the
type of analytics requested for demonstration is not defined in
the standards.

B. NWDAF in combination with Anomaly Detection

Relevant works on combining the NWDAF with anomaly
detection scenarios have been published by Mekrache et al.
[7] and Sevgican et al. [8]. [7] utilized the NWDAF to detect
UE traffic anomalies using an unsupervised machine learning
approach, specifically utilizing the Long Short-Term Memory
(LSTM) Autoencoder algorithm. They trained the LSTM
Auto-encoder with real data from the Milano dataset and
incorporated various 3GPP-standardized analytics provided by
the NWDAF. These analytics included network performance

analytics, specifically session success ratios and the number
of UEs in an area of interest, UE communication analytics,
and NF load analytics. Additionally, they implemented the
”Unexpected large rate flows” exception for abnormal UE
behavior analytics. Notably, the anomaly defined in their work
pertains to an unexpectedly large amount of network traffic.
In contrast, we define it as an unexpectedly low amount, pos-
sibly indicating issues such as signal interference or network
congestion. Furthermore, a key distinction of their approach
and ours lies in their utilization of OAI 5G-CN5 as the 5G
core network, which already integrates AMF and SMF Event
Exposure services. While they implemented the number of
UEs in area of interest analytics, they derived this information
through AMF registration events. Arguably, the specific events
required to derive NUM_OF_UE analytics are not standard-
ized; the standard merely defines the type of data and its source
for deriving the analytics. However, the AMF event exposure
service offers the UES_IN_AREA_REPORT event, which,
while not explicitly designated for NUM_OF_UE analytics,
is logically suitable for this purpose. Therefore, in this work,
the implementation of the number of UEs in an area of interest
analytics relied on UES_IN_AREA_REPORT events from the
AMF event exposure service. Similar to [7], [8] also focused
on implementing network traffic anomaly detection using
the NWDAF and defined the anomaly as unexpectedly large
amounts of network traffic. One notable difference, however,
is their use of synthetic data for the experiments. The data
generation scenario involved five Remote Radio Unit (RRU)
cells, each serving three subscriber categories: platinum, gold,
and silver. Within each subscriber category, five different types
of personal equipment were considered: IoT devices, vehicles,
cell phones, smartwatches and tablet computers. Mean han-
dover ratios per hour for each device type, with varying values
based on the time of day to simulate real-world scenarios have
been assigned. Additionally, a set of predefined initial loads
for each cell was defined, categorized by subscriber category
and device type. Subsequently, six months’ worth of network
traffic data have been generated, comprising snapshots of the
network taken at 15-minute intervals. Within each interval,
UEs may perform handovers between adjacent cells. Following
this, the authors trained two anomaly detection models and
compared their performances. They employed logistic regres-
sion and XGBoost techniques, with XGBoost demonstrating
superior performance in predicting anomalies compared to
logistic regression. It is noteworthy that in contrast to the
present work none of the standardized APIs for the NWDAF
were implemented, and a 5G core network was not deployed
for the experiment.

IV. SESSION-BASED ANOMALY DETECTION CONCEPT

In a private 5G network environment a limited number of
users connect via the base stations to the local network and
resources, including machine to machine communication of
devices working together on the factory floor. In contrast to
public mobile networks with a highly dynamic, diverse and
mobile user base, usage patterns of the private 5G deployment
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occur in close connection with the actual purpose of the
network and the applications (repeatedly) executed in the
environment. The session-based anomaly detection concept
presented in this work exploits this characteristic and designs a
supervised learning approach that is closely linking the private
5G network with the executed use case. Consequently, when
a communication pattern changes on the factory floor e.g. due
to a different manufacturing process being started, the fitting
model trained for this communication pattern needs to be
loaded from the NWDAF in order to detect the corresponding
anomalies.

The general stages of the proposed anomaly detection
concept are as follows:

1) Devices participating in the communication on the fac-
tory floor trigger sequences of events in the 5G core
network functions (NFs), e.g. in SMF upon starting or
concluding a data transmission.

2) These metadata information pieces are collected from
the NFs via purposefully designed interfaces referred
to as event exposure services, providing the particular
metadata to NWDAF.

3) The metadata collected in NWDAF’s database is then
utilized to train Al models that should detect a specific
situation deemed undesirable on the factory floor, e.g.
a failed communication of a node that leads to distur-
bances in the process.

To give an example, a robot on a production line may initiate

a communication on the task that it is about to execute, e.g.
to load the precise locations of drilling holes in a workpiece

located in its 3D CAD model. The robot executes its steps and
the metadata of this communication is screened by the session-
based anomaly detection, which triggers an alarm when the
session ends prematurely or when the transmission of data
has been smaller than expected.

Figure 2 shows these stages of the session-based anomaly
detection concept.

V. IMPLEMENTATION

In this Section we present the implemented session-based
anomaly detection concept. Figure 3 provides a high-level
view on the implemented components and interfaces within
and outside of the NWDAF, building upon the open source
Open5GS core network implementation. In general the im-
plemented components can be subsumed by their intended
functionality, with data collection functionality in blue and
data analysis parts in yellow. In addition to the Open5GS and
NWDAF related implementation work, we have created a data
generation approach based on UERANSIM.

The implementation of the session-based anomaly detection
concept is demonstrated through an industrial factory scenario,
where multiple UEs act as sensors, continuously uploading
data to a central server. The scenario is described as follows:

e A number of sensors upload 60KB of data every 5
seconds with a default bandwidth of 60 Kbps. The se-
quence of operations for each sensor includes turning on,
establishing a PDU session, uploading the data, releasing
the PDU session, and then turning off.

o Additionally, the NWDAF would be tasked to detect the
following anomalies:

— UE throughput anomaly: Sensors send data with an
upload bandwidth ranging from 30% to 70% of their
original bandwidth.

— PDU session anomaly: Sensors go through a cycle
of establishing, releasing, and reestablishing a PDU
session.

In the following subsections we provide a description of
the data generation, data collection and data analysis parts
that simulates the aforementioned scenario.

A. Data Collection for Session-based Anomaly Detection

The data collection part aims at bringing the relevant infor-
mation for the anomaly detection into the NWDAF. In order
to achieve this we implemented the Namf EventExposure and
Nsmf EventExposure services, which were not implemented
in the 2.6.4. version of the Open5GS. The implementation of
the Nsmf EventExposure service focused on notifying when
a PDU session was established or released, represented by
the PDU SES EST and PDU SES REL events, respectively.
Conversely, the Namf EventExposure service facilitated no-
tifications regarding UEs in specific areas of interest, repre-
sented by the UES IN AREA REPORT event. Upon event
occurrence, these notifications are sent to the Data Collection
Module, comprising an NGINX server and a callback server.
Given that all Service-Based Interfaces (SBI) in Open5GS
communicate via HTTP/2, the options were either deploying
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a reverse proxy to convert HTTP/2 requests into HTTP/1.1 or
implementing a callback server that handles HTTP/2 requests
directly. The former option was chosen to allow for different
callback server implementations in the future, as not many
server frameworks currently provide robust HTTP/2 support.
Upon receiving notifications from the Nsmf EventExposure
and Namf EventExposure services, the notifications are stored
in MongoDB and InfluxDB. The Nnwdaf AnalyticsInfo ser-
vice queries the MongoDB database for the UES IN AREA
REPORT notifications to derive analytics on the number of
UEs in an area of interest. On the other hand, the PDU session
notifications were stored to train the PDU session anomaly
ML model. Finally, the Traffic Monitor monitors the traffic of
individual UEs, which are configured to transmit packets to an
iperf2 server running on the Open5GS VM. It calculates the
throughput and subsequently stores the values in the InfluxDB
database to be utilized as training data for the UE throughput
anomaly ML model.

B. Session-based Anomaly Detection Engine

In this subsection we describe the two anomaly detection
models. Both anomaly detection models were implemented
using the scikit-learn library in Python. Specifically, the
models utilized Decision Tree to classify anomalies. The
choice of the type of machine learning method was primarily
driven by the aim to implement a straightforward machine
learning approach. Preprocessing steps were conducted using
the pandas library to group, filter, and manipulate the data.
The implementation process of the anomaly detection models
first involves constructing datasets from the collected data
described in the previous section. There are three time series
datasets in total:

1) PDU Session Dataset: contains information regarding
the establishment or release of PDU sessions. It includes
details such as the UE’s SUPIL, IP address, and the
designated data network for the PDU session.

2) UE Throughput Dataset: records the uplink throughput
values of the UEs during data transfer. The UEs are
identified by their IP addresses.

3) Event Report Dataset: contains events from a simulation
conducted during the data generation phase, which are
used to label anomalies in both the PDU session and UE
throughput datasets. The events captured in this dataset
include:

o Start and end of the simulation

o Start and end of UE data transmission

o Start and end of the UE throughput anomaly
« Start and end of the PDU session anomaly

With these datasets, the following models were imple-
mented:

1) PDU Session Anomaly ML Model: This model utilizes
the PDU session and the event report datasets to detect
instances where a UE is unable to maintain a PDU session,
characterized by repeated cycles of PDU session release
and re-establishments. The PDU session dataset was first
divided into separate pandas dataframes, each concerning
a single UE. Two additional features were then added to
each dataframe: time_difference, which represents the time
difference between the current row and the previous row, and
is_pdu_sess_established, which indicates whether the PDU
session was established after the event in the current row.
Afterwards, labelling the anomalies in the dataset involves
referencing the timestamps of the start and end of the anomaly
events from the event report dataset. The start and end of
PDU session anomaly events in the event report are rep-
resented by SINGLE_PDU_SESSION_ANOMALY_START
and SINGLE_PDU_SESSION_ANOMALY_END events, re-
spectively. Each PDU session establishment and release
event in the PDU session dataset would be labelled as
an anomaly if it occurred within the time range of
the SINGLE_PDU_SESSION_ANOMALY_START and SIN-
GLE_PDU_SESSION_ANOMALY_END events, as shown in
Figure 4. Finally, the individual dataframes were combined
into a single dataframe for training and testing. The combined
dataframe was split into training and testing sets using an
80/20 ratio. The features used for training the model were
time_difference and is_pdu_sess_established. After training,
the NWDAF callback server, as described in the data collection
subsection, invokes this model upon receiving PDU session
notifications to predict whether a notification is part of a PDU
session release-reestablishment anomaly cycle.

2) UE Throughput Anomaly ML Model: This model
utilizes all three datasets to detect UEs exhibiting impaired
throughput during data transfer. The PDU session dataset
was used to map the IP addresses in the UE throughput
dataset to the SUPIs, since the Traffic Monitor identifies
packets by their IP addresses rather than by their SUPIs.
Similar to implementing the PDU session anomaly model,
the UE throughput dataset was divided into separate
dataframes for each UE before labelling the anomalies
in the throughput values. Additionally, the timestamps of
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the start and end of UE throughput anomaly and data
transfer events in the event report dataset were referenced
to label anomalies in the UE throughput dataset. The start
and end of UE throughput anomaly events are represented

by the LOWER_BANDWIDTH_ANOMALY_START
and RESET_SENSOR  events, respectively. The
LOWER_BANDWIDTH_ANOMALY_START event sets

the bandwidth of the next data transfer to be 30% to 70%
of the default 60Kbps, while RESET_SENSOR resets the
bandwidth back to the default for the next data transfer.
In contrast, the start and end of the data transfer are
represented by the UPLOAD_READING_START and
UPLOAD_READING_STOP events, respectively.

# tpd holds throughput values of a UE
# lba holds data transfer events and UE throughput anomaly events

is_lower_ bandwidth_anomaly = False

for i, row in lba:
if row["name"] == "LOWER_BANDWIDTH_ANOMALY_ START":
is_lower_bandwidth_anomaly = True
elif row["name"] == "RESET_SENSOR":
is_lower_bandwidth_anomaly = False
elif row|["name"] == "UPLOAD_READING_START":
if is_lower_bandwidth_anomaly:
# find the next UPLOAD_READING_STOP event
start = row["time"]
end = None
is_reset_sensor_event = False

for i, subsequent row in lba:

# if there are any RESET_SENSOR events

# then the anomaly has ended

# but throughput values are still anomalous

# until the next UPLOAD READING_STOP event

if row2["name"] == VRESET_SENSOR"
is_reset_sensor_event = True

if row2["name"] == "UPLOAD_READING_STOB":
end = rowz["time"
break

if is_reset_sensor_event:
is_lower_bandwidth_anomaly = False

if end is None:
# time of the last event in the simulation

end = sim_ue_df["time"] [sim_ue_df.index[-1]]

label as anomaly in tpd \

if throughput ["time"] >= start and throughput ["time"] <= end

else:
continue

Listing 1. Pseudocode of labeling throughput anomalies

Listing 1 details the algorithm for labelling the UE through-
put anomalies in each UE throughput dataframe.

Unlike the anomaly labelling process of the PDU session
dataset, not every value in the UE throughput dataset is
anomalous within the time range of the start and end of the

anomaly events. This is because the simulation was designed
so that UE throughput anomaly events do not interrupt ongoing
data transfer. Changes to the bandwidth value during an active
data transfer will only affect subsequent data transfers. For
example, the following sequence of events will result in the
UE uploading data at normal bandwidth:

e UPLOAD_READING_START,
LOWER_BANDWIDTH_ANOMALY_START,
UPLOAD_READING_STOP,
LOWER_BANDWIDTH_ANOMALY_END

e UPLOAD_READING_START,
LOWER_BANDWIDTH_ANOMALY_START,
LOWER_BANDWIDTH_ANOMALY_END,
UPLOAD_READING_STOP

Conversely, the following order of events will result in the

UE uploading data at impaired bandwidth:

e« LOWER_BANDWIDTH_ANOMALY_START,
UPLOAD_READING_START,
LOWER_BANDWIDTH_ANOMALY_END,
UPLOAD_READING_STOP

e« LOWER_BANDWIDTH_ANOMALY_START,
UPLOAD_READING_START,
UPLOAD_READING_STOP,
LOWER_BANDWIDTH_ANOMALY_END

Therefore, prior to the start of a data transfer, the

LOWER_BANDWIDTH_ANOMALY_START event should
have occurred for a throughput value to be anoma-
lous. In Listing 1, this is depicted by the occur-
rence of a UPLOAD_READING_START event, while the
is_lower_bandwidth_anomaly variable is set to true. If this
condition occurs, the algorithm iterates through the sub-
sequent rows of the event report dataset until an UP-
LOAD_READING_STOP event is found. During this process,
all throughput values within the timestamp range of the UP-
LOAD_READING_START and UPLOAD_READING_STOP
events are considered anomalous. Similar to the PDU session
anomaly model, the individual dataframes were combined into
a single dataframe for training and testing, with the combined
dataframe split into training and testing sets using an 80/20
ratio. Only the throughput of data transmission from the UE
to the iperf server was used as the model feature because
the simulation involves only one type of UE, ie. sensors.
If multiple types of UEs with distinct traffic patterns were
introduced, incorporating the type of UE as a feature would
be necessary to accurately capture the differences in traffic
patterns. Finally, the UE throughput anomaly model is then
tasked to predict whether a calculated UE throughput value
from Traffic Monitor is anomalous.

C. Data Generation

In order to generate characteristic load and obtain the
required events from the amended Open5GS core, we have
implemented an environment based on the UERANSIM sim-
ulator.

The overall data generation concept is visualized in Figure
5, with 2 VMs running on the same host PC. Originally



2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

VM 2

UERANSIM

b,

=
UERANSIM
sesownons

Tpert
server

NwdiAMmH'

Data Collection

Data Generation
Data Analysis

Host Machine

Fig. 5. Data generation with UERANSIM Runner

devised for testing 5G Core Network and studying the 5G
system, we have implemented our own UERANSIM Runner
component, which serves us as the simulated device layer
and gNB to mimic the industrial private 5G deployment.
Accordingly, UERANSIM Runner is implemented as a Python
script that simulates a 5G industrial factory scenario with UEs
acting as sensors and a single gNB, allowing for the simulation
of an arbitrary number of UERANSIM UEs.

A large portion of the script relies on the third-party sched-
ule? library to execute shell commands at predefined intervals.
Each UE has two schedulers to orchestrate the execution of
these commands:

1) UE Scheduler: responsible for handling UE operations
such as turning on and off, establishing/releasing PDU
sessions, and simulating data upload.

2) Anomaly Scheduler: coordinates the execution of UE
throughput and PDU session anomalies.

Figare 6 visualizes the approach for generating the PDU
session anomaly with the help of the anomaly scheduler.

UE Anomaly
Scheduler

t (seconds) Scheduler

upload
@60Kbps. |

signals to stop and_ |
start anomaly

starts UE

stops UE

starts UE

stops UE

starts UE

tops UE[ .
— signals to stop anomaly and

| reschedule upload job

Fig. 6. PDU Session Anomaly

3https://github.com/dbader/schedule

VI. EXPERIMENTAL VALIDATION SCENARIO AND
EVALUATION

This section evaluates the performance of the PDU session
and UE throughput anomaly ML models. The model predic-
tions were generated after training the model with generated
data from UERANSIM Runner. The scenario is described as
follows:

o Two UEs were deployed. Each UE was scheduled to send
60KB of data at a default bandwidth of 60Kbps every 5
seconds.

o UE throughput anomalies were scheduled 30 times for
each UE, with each anomaly lasting for the default
duration of 20 seconds.

o PDU session anomalies were scheduled 12 times for each
UE, and each anomaly lasted 10 seconds by default.

o The anomalies were scheduled to occur at random times-
tamps.

o The simulation ran for a total duration of 30 minutes.

The PDU session and UE throughput anomaly ML models
have been handled for the preprocessing steps, labeling of
the anomalies, and the training phase as described in Section
V-B. The same scenario was then used to evaluate the models’
predictions, which we describe in the following. The results
follow a similar trend for both UEs, therefore only one is
provided for the sake of brevity. Figure 7 shows the cycles
of PDU session establish and release for UE1 with the output
of the PDU session anomaly model. The thick lines indicate
the change of the session status in quick succession, the
red markers indicate that the PDU session anonialy model
predicted an anomaly (e.g. a preempted session). Figure 8 on
the other hand shows the uplink throughput of UE1 including
the output of the UE throughput anomaly detection model.
As can be seen the model successfully detects when the user
traffic pattern for uplink traffic shows anomalous behavior,
indicated again by the red dots.

During the 30 minute simulation, both models achieved
high scores across all metrics. Notably, both models achieved
precision scores of 0.96 for “False” and 0.97 for “True”,
indicating minimal false positives. The throughput anomaly
model nearly achieved perfect recall for the “False” class while
the PDU session anomaly model lagged slightly behind by
1%. However, both models exhibited identical recall scores of
0.95 for predicting the “True” class. Overall, the high accuracy
scores of 0.96 for both models affirm in accurately classifying
anomalies within the dataset. While the models were able
to correctly detect PDU session or throughput anomalies, it
should be noted that they have been designed and trained
for a specific traffic and usage pattern, therefore they will
not perform well for other scenarios were different usage
patterns occur. Hence, the specific industrial application traffic
and usage pattern is required for training the model to detect
anomalies in a given scenario, tightly coupling then ML model
and anomaly detection with the use case at hand.
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VII. CONCLUSION AND FUTURE WORK

In this paper we have presented the concept of session- and
throughput-based detection of UE anomalies, based on data
gathered from a real 5G core network, fed with simulated user
interactions utilizing UERANSIM. The approach may serve as
a blueprint for the generation of tailored anomaly detection
functions that exploit known traffic patterns in industrial
factory scenarios. Regarding the existing body of work in
the NWDAF specification, we contribute with our approach
with an additional category of abnormal user behavior that
amends the existing standardization of the NWDAF. We have
implemented the required functionalities in the relevant core
network functions of Open5GS in order to expose the metadata
of PDU sessions from SMF, UE throughput from the UPF, as
well as the UE location from the AMF. We presented two
ML models trained on the obtained metadata, which showed
a high accuracy in detecting anomalies when fed with our
implemented anomaly generator component.

Having validated the concept by means of simulated users,
we are currently working on applying the solution on our
private 5G testbed deployed at the TU Berlin campus. Fur-
thermore, we are working on integrating the session-based
anomaly detection in other work packages of the Cobra-5G
project, exploiting the core perspective on user sessions in

other contexts.
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