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Abstract—The proliferation of private 5G networks requires
novel means to support the owner in its operation. This mandates
keeping the 5G network fulfilling the specific application scenario
secure and ensuring an overall resilient deployment. Along these
lines this paper presents a novel NWDAF-based user session
anomaly detection approach, contributing with a blueprint for
the tight coupling of a 5G-based private network deployment with
an example industrial use case. We therefore exploit the prior
knowledge of user sessions in the industrial context and utilize
the metadata exposed by 5G core network functions amending
the open source Open5GS core. We present two ML models
trained on the obtained metadata of PDU session and user traffic
patterns, which showed a high accuracy in detecting anomalies
when fed with our implemented anomaly generator component.

I. INTRODUCTION

The widespread commercial availability of 5G technology -

manifested by a plethora of 5G end-user devices, radio access

infrastructures and 5G core network implementations - has

made it viable to deploy small scale, purpose-built private 5G

networks. In addition, since 5G’s technological foundations are

built on web (Rest API) and cloud technologies (virtualized

network functions), the private 5G network can be easily

dimensioned and deployed to fit the operation to the intended

environment, with the end-to-end communication all being

under the control of the owner of the 5G infrastructure, as

compared to connecting via public Mobile Network Operators

(MNOs). Based on this outlook, market research firms are

expecting high growth rates of private 5G deployments in the

years to come1.

However, in order for these growth expectations to mate-

rialize, we believe that several challenges need to be over-

come. First, it will be challenging, e.g., for the manufacturing

industry unacquainted with 5G technology, to operate and

maintain the private 5G network, as highly specialized staff

- similar to the engineers working in the Network Operations

Center (NOC) of mobile network providers - need to be

hired to ensure the seamless operation across all network

segments from radio access to backend applications. Secondly,

a private 5G deployment needs to support the improvement of

a legacy industrial manufacturing process in order to justify

1https://www.grandviewresearch.com/industry-analysis/private-5g-network-
market

the investment. Both challenges may be addressed by i) better

supporting non-expert workers in operation of a private 5G

network, making it a secure and resilient deployment, and

ii) by facilitating a tighter integration of the 5G end-to-end

application with the industrial process, fostering a tailored and

highly specialized private 5G network.

Attacking these challenges is the overall goal of the Cobra-

5G2 research project, funded by the German Federal Office

for Information Security (BSI) in the “Cyber Security and

Digital Sovereignty in 5G/6G Communication Technologies”

program.

A. Focus and Contribution

Embedded into the overall Cobra-5G approach, this paper

contributes an AI-driven solution to detect abnormal behavior

of user sessions, utilizing data collected via the Network Data

Analytics Function (NWDAF) from 5G core network functions

and the user plane, feeding it into machine learning models

that are tailored to the industrial application that is executed

on the factory floor. In doing so, this paper contributes with

a blueprint for the tight coupling of a 5G-based private

network deployment with an example industrial use case.

To achieve this, we created an NWDAF implementation to

demonstrate this use case, particularly detecting abnormal UE

traffic patterns by involving two machine learning models to

detect anomalies in UE Protocol Data Unit (PDU) session

statuses and throughput. Based on our approach, we further

contribute with a proposed addition to 3GPP’s definition of

abnormal UE behaviour analytics.

II. COBRA-5G AND 5G BACKGROUND (NWDAF)

The Cobra-5G project aims at gaining new insights into

private 5G networks (also referred to as 5G campus networks

in Germany), bringing partners from research, infrastructure

supplier and system integrator perspectives together to attain

resilient and secure private 5G deployments. Figure 1 shows

the high-level areas covered within the project. In brief,

the Container-based resilient architecture accepts the fact

that private 5G networks are characterized by containerized

2https://www.cobra-5g.de/
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Fig. 1. Overview of the Cobra-5G Project

environments across all network segments from RAN to back-

end, needing protection from physical and cyber attacks and

requiring targeted measures to increase their overall resilience.

To attain this goal, the project pursues a range of AI-based

detection approaches. The focus of this work lies in exploiting

the capabilities of the 5G core network and its network data

analytics function to detect anomalies in the behavior of users

connected to the private 5G network.

A. The Network Data Analytics Function (NWDAF)

The 3GPP has devised the NWDAF as the key network

function to collect and store relevant information pieces of an

end-to-end 5G system, serving as a central instance for arbi-

trary pieces of information provided to AI-based approaches. It

provides analytics, which can be either statistical information

of past events or predictive information, to other Network

Functions (NFs), Application Functions (AF), and Operations,

Administration and Maintenance (OAM). In [1], the 3GPP

standardised the interface for deriving these analytics, de-

tailing the required data, its source, and the corresponding

service to contact. 3GPP Release 17 specifications define

two main functional components that NWDAF instances can

implement: Analytics Logical Function (AnLF) and Model

Training Logical Function (MTLF). While the former provides

support for inference and exposes analytics services, the latter

enables the training of new machine learning models and thus

providing new trained ML models for exposure to other NFs

and AFs. Given the unlimited possibilities of data feeding

into NWDAF, its fundamental perspective goes beyond the

traditional network management systems that facilitate the

operation and maintenance of the deployed network. By taking

this perspective novel AI-driven approaches are enabled to

exploit data that add to the knowledge about 5G networks

and the use cases utilizing them.

In the present work we have extended the relevant network

functions of the Open5GS Core Network with the capabilities

to expose user and session metadata of interest to NWDAF,

in order to facilitate an anomaly detection of potentially

erroneous behavior regarding a specific application, visible

from aberrant user communications.

B. State of the art in NWDAF Abnormal UE Behaviour

Analytics

The NWDAF 3GPP specification [1] (Sec. 6.7.5.1) already

standardizes abnormal traffic patterns as an example of ab-

normal UE behaviour and correspond to “Unexpected long-

live/large rate flows” and the “too frequent service access”

exceptions. However, the abnormal UE behaviour targeted in

this paper, namely irregular PDU session patterns and low

throughput rates do not fit neatly into any of the exception

IDs standardized so far. We therefore propose to introduce

a new exception category: “Unexpected UE Traffic Pattern”.

The expected UE behaviour parameter to be provided would

then be the expected UE traffic pattern. This exception ID may

be particularly relevant for private 5G network deployments,

where operators have detailed knowledge of predictable UE

traffic patterns.

III. RELATED WORK

In this section we present the related work on private 5G

networks in industrial contexts, works involving the Network

Data Analytics Function (NWDAF) as well as those combining

the NWDAF with anomaly detection approaches.

In general private 5G networks address the specific needs

of enterprises across various sectors, including healthcare and

industrial Internet of Things (IIoT) [2]. Typically, these enter-

prises deploy their private 5G networks entirely independent

of public networks to meet stringent QoS requirements and

enable independent network operations [3]. However, one of

the main challenges in private 5G deployments is the lack of

skilled network professionals [2], where increased intelligence

to optimize operations of the network is a potential solution.

In the following we present relevant approaches implementing

the NWDAF and applications of anomaly detection in this

connection.

A. Implementations of the Network Data Analytics Function

In [4] Manias et al. introduced their NWDAF implemen-

tation with a focus on analyzing core network signaling

traffic, emulating a 5G core architecture using Open5GS and

UERANSIM. Within this architecture, each NF operates on

a separate virtual machine, and all internal network traffic is

duplicated and routed to a central host, serving as the pri-

mary hub for NWDAF analytics and operations. The authors

categorized the collected packets based on their originating

and destination NFs and extracted various statistics such

as average packet length, maximum packet length, standard

deviation of packet lengths, and total packet count for each

NF-to-NF interaction. These statistics served as features for

clustering NF-to-NF interactions using different k values.

Notable clusters identified included NF-NF pairs with no

packet exchange, NF-NF pairs with packet exchange, further

subdivided based on maximum packet length, and interactions

involving the NRF. By categorizing NF-to-NF interactions,
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the authors foresee several insights and opportunities, includ-

ing facilitating intelligent networking decisions, implementing

proactive resource allocation strategies based on monitored

NF resource requirements, and constructing network models

for anomaly detection tasks to detect and mitigate abnormal

network conditions. Ultimately, the study aimed to support

Management and Orchestration (MANO) in their decision-

making processes regarding network management and opti-

mization.

Kim et al.’s [5] NWDAF implementation comprises both

MTLF and AnLF components. Although the service API

(Nnwdaf AnalyticsInfo) of the AnLF was generated, it remains

partially implemented, allowing the service to accept analytics

requests but providing hardcoded responses. Additionally, their

implementation integrates with Free5GC, another open-source

5G core network implementation. The data for deriving an-

alytics are collected from the NFs within Free5GC and then

forwarded to the MTLF for further processing and training

of machine learning models. However, the specific nature of

the data received by the MTLF from the NFs is currently

undisclosed.

Lee et al.’s [6] NWDAF implementation includes both the

AnLF and MTLF components, with a specific focus on the

Nnwdaf AnalyticsInfo service of the AnLF and the Nnwdaf

MLModelProvision service of the MTLF. The authors demon-

strated the interaction between these two services when a

request for prediction-type analytics is directed to the Nnwdaf

AnalyticsInfo service. In this scenario, the AnLF would re-

quire machine learning (ML) models for inference. If the

required model is unavailable within the AnLF, the NWDAF

containing the AnLF sends a request to the NWDAF contain-

ing the Nnwdaf MLModelProvision service. Subsequently, the

NWDAF with the AnLF receives a URL to the ML model file,

which it then downloads to execute inference and generate

analytics results for the consumer. In this work, this workflow

was not implemented as the Nnwdaf AnalyticsInfo service

solely provides statistics and does not offer predictions on

the number of UEs in a given area of interest. Nevertheless,

the workflow proposed by the authors appears to be the ap-

propriate approach for implementing prediction-type analytics.

However, it is important to note that a 5G core network was not

simulated in their experiments. Therefore, it is unclear where

the data for deriving the analytics originates. Additionally, the

type of analytics requested for demonstration is not defined in

the standards.

B. NWDAF in combination with Anomaly Detection

Relevant works on combining the NWDAF with anomaly

detection scenarios have been published by Mekrache et al.

[7] and Sevgican et al. [8]. [7] utilized the NWDAF to detect

UE traffic anomalies using an unsupervised machine learning

approach, specifically utilizing the Long Short-Term Memory

(LSTM) Autoencoder algorithm. They trained the LSTM

Auto-encoder with real data from the Milano dataset and

incorporated various 3GPP-standardized analytics provided by

the NWDAF. These analytics included network performance

analytics, specifically session success ratios and the number

of UEs in an area of interest, UE communication analytics,

and NF load analytics. Additionally, they implemented the

”Unexpected large rate flows” exception for abnormal UE

behavior analytics. Notably, the anomaly defined in their work

pertains to an unexpectedly large amount of network traffic.

In contrast, we define it as an unexpectedly low amount, pos-

sibly indicating issues such as signal interference or network

congestion. Furthermore, a key distinction of their approach

and ours lies in their utilization of OAI 5G-CN5 as the 5G

core network, which already integrates AMF and SMF Event

Exposure services. While they implemented the number of

UEs in area of interest analytics, they derived this information

through AMF registration events. Arguably, the specific events

required to derive NUM OF UE analytics are not standard-

ized; the standard merely defines the type of data and its source

for deriving the analytics. However, the AMF event exposure

service offers the UES IN AREA REPORT event, which,

while not explicitly designated for NUM OF UE analytics,

is logically suitable for this purpose. Therefore, in this work,

the implementation of the number of UEs in an area of interest

analytics relied on UES IN AREA REPORT events from the

AMF event exposure service. Similar to [7], [8] also focused

on implementing network traffic anomaly detection using

the NWDAF and defined the anomaly as unexpectedly large

amounts of network traffic. One notable difference, however,

is their use of synthetic data for the experiments. The data

generation scenario involved five Remote Radio Unit (RRU)

cells, each serving three subscriber categories: platinum, gold,

and silver. Within each subscriber category, five different types

of personal equipment were considered: IoT devices, vehicles,

cell phones, smartwatches and tablet computers. Mean han-

dover ratios per hour for each device type, with varying values

based on the time of day to simulate real-world scenarios have

been assigned. Additionally, a set of predefined initial loads

for each cell was defined, categorized by subscriber category

and device type. Subsequently, six months’ worth of network

traffic data have been generated, comprising snapshots of the

network taken at 15-minute intervals. Within each interval,

UEs may perform handovers between adjacent cells. Following

this, the authors trained two anomaly detection models and

compared their performances. They employed logistic regres-

sion and XGBoost techniques, with XGBoost demonstrating

superior performance in predicting anomalies compared to

logistic regression. It is noteworthy that in contrast to the

present work none of the standardized APIs for the NWDAF

were implemented, and a 5G core network was not deployed

for the experiment.

IV. SESSION-BASED ANOMALY DETECTION CONCEPT

In a private 5G network environment a limited number of

users connect via the base stations to the local network and

resources, including machine to machine communication of

devices working together on the factory floor. In contrast to

public mobile networks with a highly dynamic, diverse and

mobile user base, usage patterns of the private 5G deployment
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Fig. 3. Overview on the implemented concept for NWDAF-based anomaly
detection

a reverse proxy to convert HTTP/2 requests into HTTP/1.1 or

implementing a callback server that handles HTTP/2 requests

directly. The former option was chosen to allow for different

callback server implementations in the future, as not many

server frameworks currently provide robust HTTP/2 support.

Upon receiving notifications from the Nsmf EventExposure

and Namf EventExposure services, the notifications are stored

in MongoDB and InfluxDB. The Nnwdaf AnalyticsInfo ser-

vice queries the MongoDB database for the UES IN AREA

REPORT notifications to derive analytics on the number of

UEs in an area of interest. On the other hand, the PDU session

notifications were stored to train the PDU session anomaly

ML model. Finally, the Traffic Monitor monitors the traffic of

individual UEs, which are configured to transmit packets to an

iperf2 server running on the Open5GS VM. It calculates the

throughput and subsequently stores the values in the InfluxDB

database to be utilized as training data for the UE throughput

anomaly ML model.

B. Session-based Anomaly Detection Engine

In this subsection we describe the two anomaly detection

models. Both anomaly detection models were implemented

using the scikit-learn library in Python. Specifically, the

models utilized Decision Tree to classify anomalies. The

choice of the type of machine learning method was primarily

driven by the aim to implement a straightforward machine

learning approach. Preprocessing steps were conducted using

the pandas library to group, filter, and manipulate the data.

The implementation process of the anomaly detection models

first involves constructing datasets from the collected data

described in the previous section. There are three time series

datasets in total:

1) PDU Session Dataset: contains information regarding

the establishment or release of PDU sessions. It includes

details such as the UE’s SUPI, IP address, and the

designated data network for the PDU session.

2) UE Throughput Dataset: records the uplink throughput

values of the UEs during data transfer. The UEs are

identified by their IP addresses.

3) Event Report Dataset: contains events from a simulation

conducted during the data generation phase, which are

used to label anomalies in both the PDU session and UE

throughput datasets. The events captured in this dataset

include:

• Start and end of the simulation

• Start and end of UE data transmission

• Start and end of the UE throughput anomaly

• Start and end of the PDU session anomaly

With these datasets, the following models were imple-

mented:

1) PDU Session Anomaly ML Model: This model utilizes

the PDU session and the event report datasets to detect

instances where a UE is unable to maintain a PDU session,

characterized by repeated cycles of PDU session release

and re-establishments. The PDU session dataset was first

divided into separate pandas dataframes, each concerning

a single UE. Two additional features were then added to

each dataframe: time difference, which represents the time

difference between the current row and the previous row, and

is pdu sess established, which indicates whether the PDU

session was established after the event in the current row.

Afterwards, labelling the anomalies in the dataset involves

referencing the timestamps of the start and end of the anomaly

events from the event report dataset. The start and end of

PDU session anomaly events in the event report are rep-

resented by SINGLE PDU SESSION ANOMALY START

and SINGLE PDU SESSION ANOMALY END events, re-

spectively. Each PDU session establishment and release

event in the PDU session dataset would be labelled as

an anomaly if it occurred within the time range of

the SINGLE PDU SESSION ANOMALY START and SIN-

GLE PDU SESSION ANOMALY END events, as shown in

Figure 4. Finally, the individual dataframes were combined

into a single dataframe for training and testing. The combined

dataframe was split into training and testing sets using an

80/20 ratio. The features used for training the model were

time difference and is pdu sess established. After training,

the NWDAF callback server, as described in the data collection

subsection, invokes this model upon receiving PDU session

notifications to predict whether a notification is part of a PDU

session release-reestablishment anomaly cycle.

2) UE Throughput Anomaly ML Model: This model

utilizes all three datasets to detect UEs exhibiting impaired

throughput during data transfer. The PDU session dataset

was used to map the IP addresses in the UE throughput

dataset to the SUPIs, since the Traffic Monitor identifies

packets by their IP addresses rather than by their SUPIs.

Similar to implementing the PDU session anomaly model,

the UE throughput dataset was divided into separate

dataframes for each UE before labelling the anomalies

in the throughput values. Additionally, the timestamps of
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