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Abstract—Accurate topology knowledge is crucial for software
defined networking (SDN) as it uses this to provide effective
decisions for SDN applications that provide the network control
plane. The SDN controller takes responsibility for creating and
maintaining the topology map by gathering information from the
data layer through the OpenFlow Southbound API between the
controller and the switches. The southbound interface injects link
layer discovery protocol (LLDP) packets to obtain the required
topology information from switches. However, the topology dis-
covery procedure is open to attack from malicious actors even
if secure integrity checking is added to LLDP messages when
transmitting packets between switches if valid messages are
simply relayed. This vulnerability can result in link fabrication
attacks (LFA) and topology poisoning attacks, thereby allowing
a malicious actor to reduce performance, perform denial of
service, or manipulate routing to maliciously inspect traffic. To
detect a LFA in real-time, this research proposes an unsupervised
machine learning-based detection based on an isolation forest.
The approach was evaluated in SDN switches widely used in cloud
environments and with different topology sizes. The evaluation
had a high detection performance (F1-score) of 83.92%. It also
had a 91.38% attack detection rate (recall) for host-based LLDP
relay attacks.

Index Terms—Software-Defined Networking (SDN), Anomaly
Detection, Link Fabrication Attack, Unsupervised Learning,
Machine Learning

I. INTRODUCTION

Software defined networking (SDN) brings new features to
data centre and cloud based networking such as centralised
management of quality of services QoS and intent based rout-
ing/switching which is difficult with traditional networks [1].
In traditional network devices, decisions such as routing, QoS,
and security have to be managed within the devices without
an overall network view. SDN is a central control network that
separates the control plane from the data plane. The control
plane operates as software running on a centralised controller,
determining data flows through the network, managing multi-
ple network devices, and making responsible policy decisions.
The data plane consists of network devices that forward traffic
according to instructions received from the central controller
that provides the control plane. This separation allows for
centralised network management, dynamic configuration, pro-
grammability, and scalability. The benefits of SDN make it
attractive to cloud providers and data centres [1] to adopt SDN
technology for optimising their network efficiency, automating
network management, and scaling network service to their
customers. However, security in SDN poses some new chal-
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lenges [2], and this paper addresses one of these challenges,
specifically topology manipulation attacks.

The control plane is delivered by the SDN controller, with
key responsibilities including topology discovery for route de-
termination, traffic flow management, and policy enforcement;
it serves as the network’s brain. In terms of topology discovery
and route determination, the controller gathers information,
including the network devices and links between them. This
information is crucial for the controller to function effectively.

The topology discovery process automates the identifica-
tion of hosts, switches, and links between the devices. The
controller and switches communicate via the OpenFlow proto-
col [3], which uses the OpenFlow discovery protocol (OFDP)
to identify links between switches. OFDP uses LLDP to ad-
vertise information between active switch ports. The controller
builds a centralised topology view after gathering information
from LLDP packets. The mechanism of link discovery updates
every three seconds to support a dynamic management system.

There are potential threats to SDN’s topology discovery
using LLDP. A significant vulnerability in this protocol is
a link fabrication attack (LFA); attackers can exploit LLDP,
an insecure protocol with weak authentication, and no autho-
rization or validation checks, to gain unauthorised access or
manipulate network configurations. The LFA aims to poison
the controller’s central topology view by creating a false
link (or links) through compromised devices. Using this false
topology an attacker can generate misleading flow traffic, dis-
rupt communication between critical applications, overwhelm
network resources, and deny network availability to legitimate
devices. The type of LFA discussed in this paper is particularly
concerning as it cannot be protected through techniques such
as HMAC integrity checking [4] due to the attack simply using
a relay of valid messages. Additionally, as switches openly
broadcast LLDP messages from all ports, any connected host
can relay the LLDP messages to another switch without any
opportunity for the management plane to mitigate this attack.
Consequently, alternative approaches are needed for mitigation
against this attack.

This study proposes an intrusion detection approach to
discover host-based LLDP relay detection using unsupervised
learning. It can verify bi-directional switch links and detect
anomalies in real-time. This approach demonstrates a high
recall, which means it effectively identifies a host-based LLDP
relay attack. The controller can then use this to mitigate the
attack by ignoring these fake LLDP packets.
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The rest of the paper is organised as follows: Section II
introduces the background of SDN topology discovery process
and the LFA attack before Section III discusses related work.
A model is proposed in Section IV, with the evaluations of
this model in Section V. Section VI discusses the proposed
deployment, and Section VII concludes the paper.

II. BACKGROUND

This section provides a detailed description of the SDN
topology discovery process, threat model, the LFA, and a brief
background on anomaly detection and Isolation Forest.

A. SDN topology discovery process

Topology discovery is an important service for controllers.
It collects information from the data plane and creates a central
view which many SDN applications use to complete their
tasks. OFDP is adopted for SDN topology discovery. It can
be described as follows:

1. Host discovery: This process uses a host tracking ser-
vice (HTS) that depends on the controller platform [5]. For
example, the ONOS controller [6]- [7] uses the HostManager
to track hosts and identify locations by MAC address and IP
address.

2. Switch discovery: This is the initial handshaking process
[8]. Switches register with the controller using OpenFlow
(with preconfigured IP address and TCP port number) us-
ing the OFPT_Hello message. An OpenFlow switch notifies
the controller about its active switch ports, port IDs, and
related MAC addresses as soon as the switch and con-
troller establish a connection, in response to an OpenFlow
OFPT_FEATURES_REQUEST and OFPMP_PORT_DESC
message. Therefore, the controller has information about each
switch to add/modify/delete flow rules and manage each
switch.

3. Link discovery: OFDP leverages the Layer 2 LLDP
packets to send switch information to controllers and switches.
Network devices use LLDP as a standard protocol to announce
their presence and capabilities. The LLDP packet consists of
a header and a payload. The header includes the destination
MAC address (LLDP multicast: 01:80:C2:00:00:0E), source
MAC address, and Ethernet type. The Ethernet type field,
which is set to 0x88cc, is used to identify LLDP frames from
other frames. The payload comprises a variety of type, length,
and value (TLV) fields. The mandatory TLVs are Chassis ID
TLV, Port ID TLV, TTL TLV, and End of LLDPDU TLV.
The optional TLVS are different for each controller platform.
For instance, the ONOS controller’s optional TLV includes
the ONOS chassis, ONOS port, unknown subtype (0x4), and
unknown subtype (0x5). The format of the LLDP packet is
shown in Figure 1.

When the controller receives all of the information from
the switch, it periodically creates an LLDP packet to be
encapsulated and sent by a OFPT_PACKET_OUT packet to
the switch’s OpenFlow port from the southbound interface.
The LLDP packet is then sent by the switches from the
allocated port. When a switch receives an LLDP packet from
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Fig. 1. LLDP packet format.
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Fig. 2. Link Discovery Process

a neighbouring switch (or an attacker mimicking a switch) the
switch encapsulates the LLDP frame in OFPT_PACKET_IN
packet and passes the message to the controller as illustrated
in Figure 2. By executing these actions on every switch,
the controller constructs the complete network topology.
The OFPT_PACKET_OUT packets, with an enclosed LLDP
packet, is sent periodically, for example, every three seconds
in ONOS. In this way the controller obtains a central topology
view which is dynamically updated. We will see that this
process is vulnerable to malicious attacks.

B. Threat model: link fabrication

As described in the introduction there are a number of
potential threats to SDN [2]. This paper addresses a particular
type of attack termed a link fabrication. This is of interest to
a potential malicious actor as they can use this to introduce a
fake link to the SDN network to achieve a potential number
of aims including: diverting traffic into the fake link so that
the traffic can be monitored; reducing the performance of the
network by introducing a slower link; or creating a denial
of service attack in the network. This type of attack is more
fully described below in II-C, but the high-level threat is first
described here. As described above in II-A, LLDP messages
are used to automate the network topology discovery process
for the controller so that it can detect all the connections
between switches (and potentially other network entities such
as servers/hosts). To enable this the controller broadcasts the
LLDP messages, but to enable the automated discovery the
controller has to assume that the LLDP messages are only
distributed between valid switches. This implicit trust is at
the heart of the threat as there is no obvious mechanism
to allow automated discovery without this element of trust.
Consequently, this paper shows how to detect when this trust
has been breached rather than disallow automated topology
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discovery which has uses in dynamic networks or networks
that require reduced management overhead.

C. Link fabrication attack (LFA)

The controller’s centralised management and control over
the whole network is attractive for an attacker to manipulate
for malicious purposes. The LFA attack aims to mislead the
controller by maliciously using LLDP and creating a fake
link (or links) in the central topology view. It can make
communication across the network vulnerable to denial of
service, monitoring packets and malicious control. An LLDP
packet relay is a method to mount an LFA as a malicious node
in the network captures, copies, relays the LLDP packet and
then injects it into a switch port to trick the controller into
believing in a fake link. An LLDP packet relay attack, also
known as a host-based LLDP relay packet attack, can use
compromised end hosts to create LFA, although compromise
switches could be used for this attack. This attack requires
at least two compromised hosts. They create a channel with
traffic data fields that are not visible to the controller and
communicate with each other. This approach to building a
channel is called an in-band or logical channel [9].

This type of LFA can be understood by a simple example
shown in Figure 3 with two hosts H1 and H3 that are
under the control of a malicious actor. The controller initiates
a new LLDP packet by encapsulating it in an OpenFlow
OFPT_PACKET_OUT packet, sends it to S1, instructs it to
decapsulate the LLDP packet and send out of ethl assuming
ethl could be a potential link to a previously unknown switch-
to-switch link; likewise, the controller will send other LLDP
packets out of all the other interfaces. H1 captures this LLDP
packet, encapsulates it in the aforementioned channel and
sends it to H3. H3 then injects this LLDP packet into ethl of
S3. S3 then sends this LLDP packet to the controller by encap-
sulating it in OFPT_PACKET _IN OpenFlow packet. The con-
troller matches the LLDP sent in the OFPT_PACKET_OUT
packet and received OFPT_PACKET _IN packet assuming that
there is a link between S1 and S3 and records it in the
OpenFlow topology table, assuming it is like any other actual
link and the LFA attack is complete. H1 and H3 can now
capture packets that are sent over this malicious link or
rate limit or block data packets allowing other attacks to be
performed.

While mitigation strategies exist for LLDP modification
attacks [4], the described LFA attack does not require any
modification to the LLDP packet. Thus, HMAC based integrity
protection, as proposed by Alharbi et al. [4] cannot help
against the LFA described in this paper. Instead we show how
anomaly detection is possible and this can be used to mitigate
the attack by blocking these detected packets.

D. Anomaly detection and Isolation Forest

Identifying data points or events that significantly depart
from normal trends is termed anomaly detection. Anomaly
detection can be accomplished through a variety of strategies,
such as ML, rule-based systems, and statistical approaches.

S2

eth2 E eth3
]

ethl

1 ___________________
S I Fake Link

[H1 Relay S1-eth1 LLDP packet | | H3 Relay S3-eth1 LLDP packet |

Fig. 3. Host-based LLDP relay packet attack

Accuracy is a major problem in anomaly detection since some
techniques might generate a large number of false positives,
mistakenly labelling good data as bad. Furthermore, the quality
and relevance of the data have a major impact on anomaly
detection’s efficacy. Depending on the features of the data, the
form of anomaly, and the requirements of the application, these
approaches can be applied individually or in combination.

ML algorithms for anomaly detection aim to find patterns
and anomalies in typical data or events. The most common
ML technique for anomaly detection is the supervised learning
technique. This model requires labelled data for training.
This can be effective for identifying known threats. However,
labelling data can be a time-consuming and resource-intensive
process, especially for rare anomalies and complex datasets.
The unsupervised learning algorithm works with unlabeled
data, making it suitable for finding unexpected anomalies
without needing pre-defined categories. This paper uses an
unsupervised approach.

An isolation forest (iForest) [10] is an effective and efficient
unsupervised ML for anomaly detection. It detects anomalies
by isolating data with a binary tree called an isolation tree
(iTree), which is effective for isolated data. Anomalies are
highly likely to be close to the root or have short average
path length on an iTree, while normal data are likely to be
isolated at the deeper end of an iTree. The iForest constructs
an ensemble of several iTrees, similar to a random forest.
The iForest approach isolates abnormal data from normal
data, making fast detection performance converge for a small
number of trees. An iForest requires a small sampling size for
effective detection, which can reduce computational cost and
memory usage.

An iTree (one of many in the iForest) is constructed in the
training phase by taking an arbitrary feature in the data, for
example, it could be mean transmission time. The iTree then
creates a binary decision tree by choosing a random split point
in this feature, for example, one child less than a certain mean
transmission time, the other child greater or equal to the split
point. Each new item from the data is then used to grow this
iTree by proceeding down the iTree and growing with a new
random split point if it is unique, or allocating to an existing
leaf if it is the same value as a previous item. In practice, with
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continuous data with high precision values that do not repeat,
the itree will grow deeper with each new item. Consequently,
a maximum depth is commonly set as a parameter. During the
running phase, new incoming data is placed in each iTree of
the iForest according to the random split points allocated in
the training phase. The anomaly score, s, is the output of the
iForest analysis on this data, it is defined over the data = as
[10]:

—E(h(x))

s(x,m) =27 < (1)

where E(h(z) is the average of the depth, h(z), from the
collection of iTrees and ¢(n) is a normalising factor derived
from the the average depth when searching through all the
points in the trees n and can be obtained as [10]:

en)=2H(n—1)—-2(n—1)/n (2)

where H (i) is the Harmonic number, the sum of the recipro-
cals of the first n natural numbers. H (i) can be approximated
(a good approximation for n being high as in our case) as:

H{(i) ~ log(i) +~ 3)

where 7 ~ 0.557 is the Euler—Mascheroni constant. The
anomaly score 0 < s < 1, is interpreted as follows:

« if data return s very close to 1, they are anomalies,

o if data have s much smaller than 0.5, they are safe to
regard as normal,

« if datareturn s ~ 0.5, they do not display strong anomaly.

IIT. RELATED WORKS

While SDN offers significant advantages in network man-
agement and automation, its reliance on accurate topology
discovery makes it vulnerable to various attacks. Countermea-
sures have been proposed by many studies to mitigate host-
based LLDP relay attacks in SDN networks. The solutions
used to identify anomalies or prevent this attack are briefly
discussed in this section.

To mitigate the risk of host-based LLDP relay attacks,
some studies introduced a security framework for detecting
SDN link discovery attacks. Chou et al. [11] have presented a
correlation-based topology anomaly detection (CTAD) frame-
work. CTAD can monitor and record topology status as well
as use correlation analysis for defence LFA attacks. The new
LLDP packet format was proposed for detecting LFA along
with time difference analysis using a Box-and-Whisker plot.
However, the CTAD framework required many resources and
bandwidth to generate and send probe packets in the SDN
network to calculate the correlation coefficient.

Salti et al. [9] proposed a LINK-GUARD framework that
can detect LFA using probe packets and calculate link la-
tency. The link latency measurement module uses boxplot like
computations to identify outliers. This framework, however,
necessitates sending flow rules and probe packets over the
network to calculate link latency for fake link identification. It
also has restrictions on detecting low-latency networks, which
are less than 5 ms.

In order to identify this particular form of attack, it is
important to thoroughly analyse the network’s behaviour and
status. According to Gao et al. [12], LFA relay attacks result
in an increased frequency of the victim host’s IP address in the
mainstream network. This study employs entropy calculations
to examine the distribution of destination IP addresses and the
expanded frame format of LLDP frames, which are crucial
for integrity verification and safeguarding against forgery and
replay. However, the framework required many resources to
create a host mapping table and encrypt all the LLDP packets.

Soltani et al. [13] have presented a ML-based defence
system: a ML-based link guard (MLLG) for the rarely update
network and real-time link verification (RLV) for the frequent
update network. MLLG is an offline detection approach that
is not able to handle big networks effectively, whereas RLV
requires a retraining model to cope with different latencies.
The RLV’s recall or true positive rate (TPR) is moderate,
possibly leading to the omission of certain forged links.

A security solution that is based on P4 switch and calls
a security-aware programmable (SECAP) was presented by
Smyth et al. [14] to detect LFA. SECAP offers two services:
source address verification and in-network anomaly detection.
SECAP provides these services using a new variance-based
anomaly detection method. The limitations of SECAP, includ-
ing its lack of support for looping and recursive functions,
limit the possibilities for the real-world implementation of the
P4-based prototype.

Several different approaches were utilised to detect abnor-
malities for LFA attacks. However, the challenge of unsuper-
vised ML in these attacks remains an unaddressed research
area of study and is thus addressed in this paper.

IV. PROPOSED MODEL

To mitigate the LFA, we propose two modules for ML-based
LFA detection. The link verification module is responsible for
capturing and extracting LLDP information in real-time. After
obtaining the LLDP information, feature engineering is used
to create new features for a stronger signal from the dataset.
The second module is the anomaly detection module, which
uses ML to detect host-base LLDP relay packet attacks.

A. Link verification module

The link verification module aims to capture LLDP packets
and examine bi-directional links between switches by extract-
ing the necessary features. This study focuses on link latency.
Once we have extracted the features, we calculate the link
latency and its statistical characteristics.

The feature extraction process involves collecting the
OFPT_PACKET_OUT packet and OFPT_PACKET_IN packet
on the controller using packet capture tools. As mentioned
in the previous section, the SDN’s controller broadcasts
OFPT_PACKET_OUT packet to every active port on every
switch and receives OFPT_PACKET_IN packet from switches.
Once the controller matches OFPT_PACKET_OUT packet and
OFPT_PACKET_IN packet, it can create the network’s central
view. This detection mechanism can verify a bi-directional
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TABLE I
ML FEATURES, A IS THE LLDP LATENCY, QTXX REPRESENTS THE A
QUANTILE UP TO XX %

[ No. | Feature Name [ No. | Feature Name |
1 Flow 18 QT55
2 SourceSwitch_No 19 QT60
3 DestSwitch_No 20 QT65
4 Number_Packets 21 QT70
5 Mean A 22 QT75
6 Std Deviation A 23 QT80
7 Minimum A 24 QT85
8 QTO05 25 QT90
9 QT10 26 QT95
10 QT15 27 Maximum A
11 QT20 28 Number_Link
12 QT25 29 Number_Switch
13 QT30 30 Number_Node
14 QT35 31 Number_PackOut
15 QT40 32 Number_PackIn
16 QT45 33 Number_DropPack
17 QT50

switch link in the same way. We extract features from
the packet capture and relate them to bi-directional switch
links. This module also calculates the difference between
OFPT_PACKET_OUT packet and OFPT_PACKET_IN packet
timestamps to determine link latency which is the primary
feature used for the anomaly detection. We thus choose the
features as shown in Table I.

As the ML needs to operate over a finite number of features
and the link latency measurements are arbitrarily spread,
leading to a potentially infinitesimal set of values, we need to
find a method to categorise these values as unique features. A
simple approach is to sample the experimentally determined
cumulative distribution function (CDF) of link latency mea-
surements as quantiles. This is more effective than simply
binning as a histogram of the probability distribution function
as quantiles can easily be summarised more coarsely by simply
removing quantile values from the quantile vector without
requiring modification. We choose 20th quantiles (20 equally
spaced intervals) as the initial choice to give a representation
of the CDF in a discrete form. Future work (see VI) is needed
to determine how many quantiles are actually needed, we
choose 20th quantiles to give a reasonable spread over the
CDF without needing an excessive number of features.

B. Anomaly detection module

There are two steps in the anomaly detection module: the
training step and the test step. In the formal phase, a large
dataframe is required to train the isolation forest model and
tune hyperparameter. The latter employs the optimised model
in the real network and evaluates the performance shown in
Section V.

Feature importance selection is a technique to reflect ML
computing’s performance and reduce unimportant features
that affect resource usage and time consumption. This study
uses feature selection for ML dataset preparation. The ML-
based LFA solution uses a random forest feature importance
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Fig. 4. ROC curve for comparing contamination’s Isolation forest

selection, which is an ensemble algorithm like isolation forest,
to determine the relative importance of input features.

Optimising the hyperparameters of a ML algorithm is also
essential for gaining performance. The hyperparameters of
the isolation forest model include max_samples, max_features,
n_estimators, and contamination. The max_samples parameter
determines the number of examples used to train each individ-
ual iTree. The max_features parameter determines the number
of samples used to train every iTree. The number of iTrees is
determined by the n_estimators parameter. Contamination is
defined as the proportion of anomalies in relation to the total
amount of data.

Contamination is the crucial and sensitive hyperparameter
of the isolation forest algorithm. The setting is based on expe-
rience, as well as the size and complexity of the datasets. For
this study, the observation contamination values were deter-
mined through receiver operating curve (ROC) and precision-
recall (PR) curves for an optimal result. Figure 4 and Figure 5
display the ROC and PR curves that compare performance in
different contaminations. The optimal contamination for this
study is 0.055.

V. EVALUATION

This section presents the experimental setup, the attack
model, and its implementation. Then, the performance analysis
is presented.

A. Experiment setup

The emulated testbed is built in Mininet [15], which is
deployed on server running the Ubuntu operating system
and used to emulate the OpenFlow network. Mininet uses
OpenvSwitch as the switch fabric as widely used in many
cloud networks [16]. The ONOS [6] [7] controller facilitates
communication between OpenFlow switches. Note that ONOS
has LLDP fabrication mitigation through HMAC protection
similar to that described by Alharbi et al. [4]. We ensured this
was enabled and noted that the attack was still possible even
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with this mitigation as the LFA we are using is a relay based
attack rather than a fabrication based attack. We create and
craft our LFA using Python.

B. Attack model and implementation

In this study, two compromised hosts set up the host-based
LLDP relay packet attack. Python scripts on both compro-
mised hosts establish the attack by listening for and relaying
LLDP packets. The first compromised host in the experiment
sniffs incoming LLDP packets from the interface connected to
the OpenFlow switch. After receiving the LLDP packet, the
first compromised host inserts it as a payload inside the User
Datagram Protocol (UDP) packet. After that, it establishes a
UDP client-server connection and sends the UDP packet to
the second compromised. Once the second compromised host
receives the UDP packet, it extracts the LLDP packet and
forwards it to an incoming port. The second compromised
host establishes the bi-directional switch link by sniffing and
relaying LLDP packets to the first compromised host. Then,
a fabricated link can forward LLDP packets between the two
malicious hosts.

The experiment emulates ring topology both without attack
and with a host-based LLDP packet relay attack. We randomly
create the number of switches in the topology, ranging from
4 to 15, and also assign two compromised hosts at random.
There are two scenarios of testing: Scenario 1 is a ring
topology without attack, as shown in Figure 6, and Scenario
2 is a ring topology with attack, as shown in Figure 7. In both
scenarios, the position and number of links are closely similar.
In Scenario 1, the position of two ports between S1 and S3
is unconnected to hosts (normal link), whereas in Scenario 2,
the position of two ports between S1 and S3 is connected to
hosts (fake link).

C. Dataset creation

The dataset was generated from a python script which auto-
mated the operation of the Mininet SDN system. The process

===

S2 S3

Fig. 6. Scenario 1: Ring topology without attack

- — -

L+ Fakelink™ «

Fig. 7. Scenario 2: Ring topology with Host-based LLDP packet relay attack

of creating a dataset involves two steps. First, we capture
the OFPT_PACKET_OUT packet and OFPT_PACKET_IN
packets to extract essential information for normal and attack
scenarios. In this step, the number of packets depends on
the size of the topology which varied between 4 and 15
switches which generated between 820-2720 packets per
topology. Second, we verify the bi-directional switch links and
summarise the packet information. We analyse the statistical
information of bi-directional switch links and convert it into
a CSV dataset. The dataset includes network identification
features, packet-based features, and statistic-based features,
as shown in Table I. The training dataset comprises 31200
records, of which 1200 represent fabricated link states and
the rest are normal states. Consequently, 4% of packets are
anomalous and the imbalance ratio (IR) is 24:1.

D. Result and performance analysis

As mentioned in the previous section, the link verification
module collects the link latency for this study. It is displayed
in the cumulative distribution function (CDF) of link latency
(Figure 8). The latency range varies dramatically between the
normal link, which is approximately 0-0.001 ms, and the fake
link, which is approximately 0.007-0.065 ms.

It can measure the effectiveness of ML-based LFA detection
using F1 score, precision, and recall scores or true positive rate
(TPR) or detection rate (DR). This study takes F1-score, recall,
ROC and PR into account. These metrics are as commonly
used in assessing ML systems:

TP

Precision = ———— 4
recision TP FP 4)

TP
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TABLE 11
PERFORMANCE OF ML-BASED LFA DETECTION
Algorithm Score
Precision | Recall FI
Isolation Forest 0.8448 0.9138 | 0.8392

Precision x Recall
F1=2
* Precision + Recall ©

where true positive (TP) is the number of abnormal instances
that are correctly classified as fake instances, false positive
(FP) is the number of normal instances that are incorrectly
classified as fake instances, and false negative (FN) is the
number of abnormal instances that are incorrectly classified
as normal instances.

The detection performance metrics of the ML-based LFA
detection are shown in Table II.
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Fig. 9. ROC-AUC of ML-based LFA detection
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Another metric that can measure the performance of ML-
based LFA detection is the ROC-AUC (receiver operating
characteristic area under the curve), which measures the ability
of a model to discriminate across different classes accurately.
Figure 9 shows an ROC curve that compares True Positive
Rate (TPR) to True Positive Rate (FPR). The AUC is found
to be 0.981, close to 1, indicating a high level of effectiveness,
with the highest TPR and lowest FPR.

Moreover, ML metric known as PR-AUC (precision-recall
area under curve) primarily assesses a model’s performance
in cases of class imbalance. A higher PR-AUC indicates
the model’s outstanding performance in achieving a balance
between precision and recall for the positive class. Figure 10
displays a PR curve that illustrates precision versus recall
and an AUC-PR of 0.971. Overall the results show that an
unsupervised approach using an iForest can be highly effective
in detecting LFA attacks.

VI. DISCUSSION ON DEPLOYMENT OF THE PROPOSAL

This section discusses practical issues of the iForest ML-
based LFA detection, along with potential future work.

To verify the link between switches and create a dataset,
iForest ML-based LFA detection requires link discovery infor-
mation. We conduct these processes in the SDN emulation that
is close to a real-world cloud environment. This is a different
deployment scenario compared to a network consisting of only
hardware switches where network challenges such as topology
complexity, cost computation, and jitter or noise in the traffic
network may have different results. Consequently, future work
should consider applying this approach in hardware switches
(and hybrid soft/hardware scenarios) to understand the differ-
ences.

Another aspect that needs further investigation is the la-
tency between attack start time and detection. This should be
investigated by determining the trade-off between precision,
recall and detection time. In practice, this would be a decision
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made by the developer of a tool or by a network management
team. In the experiments here we used 150 s of attack data to
determine the results. Consequently, we can confidently state
that an attack can be detected within 150 s. As the period
between LLDP packets is 3 s and at least two would be
required to detect a potential attack using this approach, a
detection window between 6 s and 150 s is the most we can
determine from this work. Future work should investigate the
precision/recall/detection-delay trade-off.

The computational cost of this work is relatively low as the
periodicity of data is only every 3 s (i.e. a low data rate) and
an isolation forest has relatively low complexity compared to
other anomaly detection techniques, such as statistical meth-
ods, classification-based methods, and cluster-based methods.
Specifically, the isolation forest has a linear computational
complexity for evaluation (detection) of O(ntlogt) where
n is the number of data points evaluated over ¢ trees with v
elements in the tree [10]. The authors of the Isolation Forest
suggest that ¢/ should be 256 over t = 100 trees and we found
these defaults to work well [10].

As discussed earlier, additional future work is needed to
determine optimum algorithm parameters such as the number
of quantiles used for features in the isolation forest and
sampling windows used; the latter is closely related to the
detection delay.

In this scenario, the switches are presumed to be trustworthy
and attacks are mounted via compromised hosts; although, a
switch (or switches) may also be compromised. The future
work will cover attacks that are launched via compromised
switches.

VII. CONCLUSION

SDN is a dynamic network architecture that uses controller
to maintain the central view of the entire network. How-
ever, SDN also introduces vulnerabilities that attackers can
exploit. While there are a number of mitigation strategies
against LLDP based topology attacks, this paper investigates
an LLDP relay attack which does not currently have a working
mitigation as it cannot be protected by techniques such as
HMAC integrity checks. In this study, a host-based LFA is
implemented in a random number of switches creating ring
topologies. An iForest ML-anomaly detection approach with
a simple statistical feature set is used to detect host-based
LLDP relay packet attacks and shows a highly effective result.
The conclusion is that an iForest-based anomaly detection can
detect host-based LLDP relay attacks and provide very good
results in terms of recall or TPR.
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