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Abstract— Automotive radar plays a crucial role in 

autonomous driving and road safety applications. However, the 

growing adoption of radar sensors leads to severe mutual 

interference among radars, significantly reducing the target 

detection rate. Numerous interference mitigation methods have 

been investigated in recent years. Recently, deep learning 

models have been applied to this challenging problem, showing 

promising performance compared to conventional methods. In 

this paper, we propose a multi-channel RNN with multi-head 

self-attention model for automotive radar interference 

mitigation. Specifically, we employ a bidirectional GRU (Gated 

Recurrent Units) model with two channels to process the real 

and imaginary parts of signals simultaneously, and utilize 

multi-head self-attention mechanisms to enhance the model’s 

ability to focus on specific parts of the input signals. The 

performance is validated through extensive simulations, 

demonstrating superior results in terms of SNR (Signal-to-

Noise Ratio), amplitude absolute error, phase absolute error 

compared to existing RNN models. 

  

Keywords— CS radar, inter-radar interference, wideband 
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I. INTRODUCTION  

 FMCW (frequency modulated continuous wave) and CS 
(chirp sequence) radars are among the most widely used in-
vehicle sensors for autonomous driving and road safety 
applications. The mmWave (millimeter-wave) CS radar [1] is 
particularly popular as an automotive radar sensor due to its 
high resolution, compactness, cost-efficiency, and superior 
robustness to weather and ambient light conditions,  
compared with cameras and LiDAR (Light Detection and 
Ranging). 
 The CS radar performs dechirping operations on 
transmitted and received signals to detect the distance and 
velocity of nearby targets. With the growing adoption of 
mmWave radars, however, the probability of inter-radar 
interference [2] increases, leading to corrupted signals.  
Mutual interference among CS radars can be classified into 
two types: wideband interference [3], which occurs when the 
chirp rates of the victim radar and the interfering radar are 
different; and narrowband interference [4], which occurs 

when they are the same. Wideband interference degrades the 
target detection rate due to increased noise levels, while 
narrowband interference generates ghost targets. Since 
wideband interference is more frequent than narrowband 
interference, we focus on wideband interference in this work.  
 To mitigate wideband inter-radar interference, various 
approaches have been proposed, ranging from conventional 
algorithm-based methods to deep learning-based methods. 
The most basic yet widely used approach is zero-suppression, 
which identifies corrupted samples using a threshold and 
replaces the samples above this threshold with zero. Building 
on zero-suppression, several algorithm-based approaches [5] 
have been proposed, which dynamically set the threshold to 
handle different types of interference patterns. In recent years, 
deep learning-based approaches demonstrated high 
performance for various signal processing problems. 
Specifically, convolutional neural networks (CNNs) are 
utilized to mitigate inter-radar interference by operating on 
RD (range-Doppler) maps [6,7], while recurrent neural 
networks (RNNs) are used to reconstruct corrupted beat 
signals in the time domain [8,9]. Compared with conventional 
algorithm-based approaches, deep learning-based approaches 
can find a mapping between interfered and clean signals, and 
thus mitigate the interference in a threshold-free manner. 
 These existing deep learning-based methods either only 
utilize the real part of the signal, or treat the real and 
imaginary parts of the signal independently. However, 
overlooking the relationship between real and imaginary parts 
may result in a loss of phase information in the beat signal, 
which is important for measuring the velocity of the target.  
 In this work, we propose a multi-channel RNN with multi-
head self-attention method to mitigate inter-radar interference. 
Specifically, we employ a bidirectional GRU (gated recurrent 
units) model with two channels to process real and imaginary 
parts of signals simultaneously, and utilize multi-head self-
attention mechanisms to enhance the model’s ability to focus 
on specific parts of the input signals. Extensive simulation 
results demonstrate the superiority of the proposed method in 
terms of SNR (signal-to-noise ratio), amplitude AE (absolute 
error),  phase AE, compared to other existing RNN-based 
approaches [8,9]. 
 The outline of this paper is as follows. In section II, 
principles of CS radar and wideband interference are 
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described. Section III and IV present the proposed method 
and simulation results, respectively. Finally, Section V gives 
the conclusion remarks. 

II. PRINCIPLE OF WIDEBAND INTERFERENCE  

A. Priciple of Chirp Sequence Radar 

 The diagram of CS radar is shown in Fig. 1. The transmitted 
signal is a linear chirp sequence that follows a sawtooth 
pattern as shown in Fig. 2. The transmitted signal could be 
represented as Eqn. (1). 

������ � �� 	 ∆�∆� � �1� 
where � is time, ∆� is bandwidth, ∆� is chirp periods, and �� 
is start frequency. The signal propagates and is reflected by 
targets, resulting in a received signal as described by Eqn. (2). 

������ � �� 	 ∆�∆� �� � ��� �2� 

�� � 2�� 	 ���
�  �3� 

where �� is time delay, � and � are distance and velocity of 
the target respectively, and � is light speed. After dechirping 
and low-pass filtering, the beat frequency �� represented by 
Eqn. (4) could be obtained. 

�� � 2∆���∆� 	 2�� �� �4� 

Upon conducting a 2D-FFT on this beat signal, an RD map is 
generated, from which the distance and velocity of the target 
could be derived using Eqns. (5) and (6). 

� � �∆�2∆�  �5� 

� � �2��  �6� 

 

 
Fig. 1 Diagram of CS radar 

 

 
Fig. 2 Radar signal and beat frequency 

 

B. Wideband Interference 

When the radar signals from different vehicles are 

received, inter-radar interference occurs. The interfered beat 

signal is represented by Eqn. (7). ���� � ���� 	 ���� 	 ���� �7� 

where ����  is desired signal, ����  is noise, and ����  is 

interference. As illustrated in Fig. 2, wideband interference 

occurs when the chirp rates of the victim radar signal and the 

interfering radar signal are different. As shown in Fig. 3, 

pulsed-like interference signals could be observed in the time 

domain because the received signal power from the 

interfering radar is generally much larger than that of 

reflected signal from the target. After FFT, this interference 

spreads across all frequencies in the frequency domain, 

resulting in increased noise level and thus a reduced target 

detection rate.  

 

 
Fig. 3 Time waveform and range profile with and without 

interference 

III. PROPOSED INTERFERENCE MITIGATION METHOD 

In this section, we firstly present the preliminaries of 
bidirectional GRU and self-attention, which are used in our 
proposed method. Then, we introduce the proposed model 
followed by the explanations of loss function and training 
procedure. 

A. Bidirectional GRU 

RNNs are classes of the neural network that are suitable 

for learning sequential data. GRU is one of the improved 

RNN models that implemented two stochastic gates to 

capture long-term dependencies with more efficiency. For a 

GRU cell, the outputs at time step � are calculated by Eqns. 

(8) to (11).  !" � #�$%&" 	 '%ℎ")* 	 +%� �8� -" � #�$.&" 	 '.ℎ")* 	 +.� �9� ℎ"0 � tanh5$6&" 	 '6�!"⨀ℎ")*�8 	 +6 �10� ℎ" � �" � �1 � -"�⨀ℎ")* 	 -"⨀ℎ"0  �11� 

where $% , '% , $. , '. , $6, '% are learnable weights, +% , +. , +6 

are learnable bias, &" , �" , ℎ"  are respectively input, output, 

and hidden state at time step � , and the symbol ⨀  is the 

Hadamard product, which computes the element-wise 

product of metrices. The reset gate !" takes a value between 

0 and 1 and is applied to the hidden states, controlling how 

much of the previous context is incorporated into the 

computation of the candidate hidden states ℎ"0  at time step �. 

The update gate -"  also ranging from 0 to 1, weights the 

hidden state at time step � � 1 and the candidate hidden state 

in the calculation of the new hidden state at time step �. The 

outputs of the recurrent layer are obtained by repeating these 

calculations across the entire sequence length. 

Fig. 4 shows the structure of bidirectional GRU (biGRU). 

BiGRU is a variant of the GRU architecture that processes 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



input sequences in both forward and backward directions. By 

utilizing information from past and future contexts 

simultaneously, biGRU is capable of enhancing the model's 

ability to capture dependencies and patterns from both 

directions of beat signals in our interference mitigation task. 

 
Fig. 4 Structure of biGRU 

B. Self-Attention 

We employ a self-attention mechanism [10] to capture the 
relationships among signal samples and between real and 
imaginary parts of the signals. Fig. 5 shows the self-attention 
architecture. First, the input vector ;  undergoes a linear 
transformation to obtain the query <=, key >=, and value ?= 
for each of the ℎ heads, as shown in Eqns. (12) to (14). <= � ;$@A 	 B@A  �12� >= � ;$CA 	 BCA  �13� ?= � ;$DA 	 BDA  �14� 

where $@A , $CA , $DA  are learnable weights, B@A , BCA , BDA  are 

learnable bias vectors, � is the head number. Afterward, these 
vectors are inputted into the Scaled Dot Product Attention 
Block. The attention weight matrix $=  of this block are 
computed by Eqn. (15). 

$= � �E��FG& H<=>=I
JKL

M �15� 

where KL  is the dimension of query <=  and key >= . The 
association between each sample is represented by calculating 
the product of the <  vector and the transposed >  vector. 
Standardization is then performed by dividing all elements by 

the scale JKL for efficient learning. The attention weight $= 
are obtained by applying the softmax activation function. The 
output N= of the �-th head is computed by multiplying $= with 
the value vector ?= as Eqn. (16). N= � $=  ∙ ?=  �16� 

The outputs of all heads are concatenated and undergo a 
linearly transformation. This yields the final output of the 
self-attention mechanism. When the number of head ℎ is one, 
we refer to this block as ‘single-head self-attention’. When ℎ 
is greater than one, we refer to it as  ‘multi-head self-attention’. 

 

Fig. 5 Self-attention architecture 

 

C. Proposed Model 

Fig. 6 illustrates the architecture of the proposed multi-
channel RNN with multi-head self-attention model, which 
consists of 3 RNN layers and two attention block layers. In 
the multi-channel RNN layer, the real and imaginary parts of 
the beat signals are separately input into biGRU cells. The 
outputs from these two biGRU cells are concatenated and fed 
into an attention block with 4 heads. The outputs of the 
attention block are split into two matrices, which serve as 
inputs to subsequent multi-channel RNN layers. Following 
the final RNN layer, average pooling is performed to obtain 
separate outputs for the  real and imaginary components.  

 

 

Fig. 6 Architectures of the proposed multi-channel RNN 

with multi-head self-attention model 

D. Loss Function and Training Setup 

 Beat signals with interference are used as inputs, while 
corresponding interference-free signals serve as labels. We 
employ the MSE (mean squared error) as the loss function P, 
defined by Eqn. (17). 

P � 1Q RS�!̂ "
U

VW*
� ! "�X 	 S�Y"̂

U

VW*
� � "�X Z �17� 

where ! " and � " are real and imaginary labels, and !̂ " and Y"̂ 
are real and imaginary outputs. The models are optimized by 
minimizing the loss P  using the ADAM optimizer with a 
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learning rate of 0.001 and a batch size of 128 inputs. We train 
the models on 50 randomly generated scenarios,  each 
consisting of  75 chirps. Table 1 displays the radar parameter 
setting ranges used in the simulation. All data is split into 
training and validation sets with a 9:1 ratio. The training 
process ends after 100 epochs. 

Table. 1 Radar parameters 

Parameters Range 

Center frequency  76~78GHz 

Distance 1~130m 

Velocity 1~50km/h 

Chirp period 20~40μs 

Sweep bandwidth 100~200MHz 

Number of targets 1 

Number of interferences 1~4 

IV. EVALUATION RESULTS 

In this section, we demonstrate the performance of the 
proposed method using synthetic CS radar signals. Firstly, we 
describe the evaluation metrics and comparison methods. For 
qualitative evaluation, we utilize time waveforms and RD 
maps. For quantitative evaluation, we measure the SNR, 

amplitude absolute error (AE) of targets, phase AE of targets, 
and processing time using Nvidia RTX A6000 GPU. 10 
randomly generated scenarios are used for quantitative 
evaluations. We compare the proposed method with 
conventional zero-suppression, RNN with single-head self-
attention [8,9], and RNN with multi-head self-attention. 
Notice that all the RNN models use biGRU cells. 

Figs. 7 and 8 depict examples of time waveforms and  RD 
maps before and after interference mitigation by different 
approaches. In the time waveform with interference, pulsed-
like interference signals are evident. After zero suppression, 
it is clear that although the samples with large amplitudes are 
replaced by 0, a significant amount of interference still 
remains. From Figs. 7(d) to (f), we observe that all RNN with 
self-attention models efficiently mitigate interference and 
reconstruct corrupted signals. The proposed method notably 
outperforms existing methods, producing a waveform closest 
to the one without interference. Regarding the RD map with 
interference shown in Fig. 8(a), we observe that the potential 
target is completely obscured by noise. Zero suppression fails 
to mitigate interference in this scenario, due to the long 
interference duration. However, RNN with self-attention 
models significantly reduce noise levels and detect the target 
successfully. Specifically, the proposed method successfully 
mitigates noise across low-frequency ranges, which the other 
two RNN methods could not achieve.

 
Fig. 7 Time waveform 

 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



 
Fig. 8 Range Doppler map 

 
Figs. 9, 10, and 11 indicate the cumulative distribution 

function (CDF) of SNR, amplitude AE and phase AE, 
respectively. In terms of SNR, the proposed method achieves 
performance closest to the SNR without interference, 
demonstrating the effectiveness of employing multi-head self-
attention mechanisms and a multi-channel RNN model. 
Regarding amplitude AE, the proposed method also excels, 
with 80% of results showing amplitude AE below 10dB, 
highlighting its superior capability in reconstructing corrupted 
signal samples. In phase AE results, the proposed method 
consistently outperforms other approaches, enabling more 
accurate velocity measurement. Finally, as illustrated in Fig. 
12, we confirm that the performance improvement of the 
proposed method comes with a longer processing time, which 
is as expected. 

 
 

 
Fig. 9 CDF of SNR 

 

 
Fig. 10  CDF of amplitude absolute error 

 

 
Fig. 11 CDF of phase absolute error 
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Fig. 12 Processing time 

 

V. CONCLUSION 

In this work, we propose a multi-channel RNN with multi-

head self-attention model for the task of inter-radar 

interference mitigation. Extensive simulation results 

demonstrate that the proposed method outperforms existing 

RNN-based approaches in terms of SNR, amplitude AE, and 

phase AE. Moreover, we show that the proposed method is 

robust against low-frequency noise. In future work, we will 

further enhance the model by employing a custom loss 

function or multi-task learning and evaluate its performance 

using real-world experimental data. 
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