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Abstract—With the emergence of the fifth-generation (5G) net-
work, numerous revolutionary applications are enabled, includ-
ing low-latency and machine-type communications. This great in-
crease creates a broader security threat concerns, such as denial-
of-service (DoS) attacks, which can disrupt network functionality.
The complexity and decentralization of 5G networks create
new vulnerabilities for adversaries, necessitating comprehensive
security procedures to identify, mitigate, and prevent DoS attacks
in 5G networks. This paper introduces a novel approach for DoS
detection in 5G networks, utilizing deep learning and machine
learning models, along with Local Interpretable Model-Agnostic
Explanations (LIME), to interpret model predictions and identify
the significant role of data features in detecting DoS attacks.
The results revealed that the random forest model demonstrated
superior recall of 99.98, while BiILSTM demonstrated exceptional
performance with a recall of 98.02.

Index Terms—DoS, Explainable-Al, DL, LIME,5G.

I. INTRODUCTION

In recent years, the number of network devices has in-
creased, which has led to an expansion of potential cyber-
attacks, prompting the development of intrusion detection
systems to ensure system security amid growing cybersecurity
concerns [1]. There are many different types of cyberattacks
that can lead to system breakdowns, such as denial-of-service
(DoS) attacks. DoS attacks are highly disruptive cyberattacks
that overwhelm network resources, making services unavail-
able to legitimate users. The detection and mitigation of
DoS attacks are crucial for ensuring network security and
service availability. The security of digital infrastructure is
critical, especially with the emergence of 5G networks. 5G
technology promises extraordinary speed, huge connectivity,
and low latency, changing industries including smart cities,
healthcare, and transportation. The concept of a global net-
work of intelligent devices with processing, communication,
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and sensing capabilities holds immense potential for various
industries, including industrial automation and healthcare [2].
Howeyver, this advancement creates new issues and obstacles in
network security [3] [4]. Prior work used artificial intelligence
techniques for DoS attack detection in 5G networks, frequently
employing the same datasets due to the limited availability
of data sources that reflect the unique characteristics of this
type of network. Al approaches, including machine learning
(ML) and deep learning (DL), help improve detection by
spotting aberrant patterns and making faster, more accurate
conclusions [5]. Network Intrusion Detection Systems (NIDS)
are becoming increasingly popular due to their usage of ML
and DL approaches and availability from third-party vendors,
allowing networking enterprises to cut expenses and focus on
core goods [6]. Yet, the application of Al poses questions con-
cerning openness and interpretability. Explainable Al (XAI)
methods such as LIME address these problems by simplifying
Al decision-making procedures for human operators. This is
critical in network security since understanding the reasoning
behind Al-driven detections allows for more timely and ef-
fective responses to threats. Advancements in Al, particularly
machine learning, have significantly transformed data analysis
and decision-making processes in various real-world appli-
cations, enabling automation and intelligent decision-making
through data combination and analysis [7], [8]. As a result,
using deep learning models in conjunction with explainable
Al approaches to novel datasets, including a wide range of
network flows captured in 5G environments, will be a new
addition to that field. The main contribution of this paper
is proposing a new approach that utilizes deep learning and
machine learning models to detect DoS attacks in 5G network
flows. Also, the paper employs the explainable Al technique
Local Interpretable Model-Agnostic Explanations (LIME) to
interpret model predictions, providing a comprehensive un-
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derstanding of the model learning process. This approach not
only interprets the decision-making process but also identifies
the significant contribution of data features in detecting DoS
attacks. The reset of this paper is organized as follows: Section
IT demonstrates the related work; Section III explains the
methodology; Section IV discusses the experimental results;
and Section V concludes this paper.

II. RELATED WORK

In recent years, the researchers have conducted significant
efforts to propose new techniques for DoS attack detection,
using machine learning and deep learning algorithms. Ka-
lutharage et al. [9] presented a new explainable Al technique
to detect DDoS attacks by analizing network traffic at the
network layer. The authors extracted the model using different
datasets and compared its performance with random fields,
decision trees, and deep neural networks. The model outper-
formed all the other models with an accuracy of 98%. Yang
Xiang et al. [10] developed an entropy-based approach for
detecting low-rate DDoS attacks. The approach detects low-
rate attacks by comparing the normalized entropy of regular
and low-rate traffic probability distributions. Tcydenova et al.
[11] designed a novel framework for detecting adversarial
attacks using machine learning and explainable Al techniques.
The framework comprises two phases: initial operation and
detection. During the initialization phase, the training process
involves the use of a support vector machine model and LIME
technique. In the detection step, the generated explanations are
evaluated to determine whether an adversarial attack occurred.
The authors gort an accuracy of 96.84%. Sauka et al. [12]
proposed a deep learning-based network intrusion detection
system that employs adversarial training and Al approaches.
Their experiments revealed that the PGD adversarial-trained
model was more resilient than the DeepFool and FGSM
models, with a ROC-AUC of 87%. The FGSM assault had no
effect on the PGD model, however the DeepFool and PGD
attacks both lowered the ROC-AUC of the FGSM model.
Keshk et al. [13] designed a new intrusion detection system for
IoT networks based on a Short-Term Long Memory (LSTM)
model. The framework trains and evaluates the LSTM model
using a unique SPIP framework, with input features extracted
from the NSLKDD, TON_IoT, and UNSWNB 15 datasets. The
framework outperformed other similar methodologies with an
accuracy of 87.30%.

Siganos et al. [14] developed an Al IoT IDS using ML, DL,
SHapley Additive Explanations, achieving 99.99% accuracy in
performance detection using random forest. Rao et al. [15] pro-
posed a zero-shot strategy for classifying new threats based on
feature influence. The system effectively distinguishes attack
traffic from normal flow and creates labels for attacks based on
contributing characteristics. These labels are straightforward
for SIEM analysts and can help them identify the type of
assault. The technique was tested on a network flow dataset,
yielding results for specific attack types. The authors got an
accuracy of 92.00%. Arreche et al. developed an explainable
Al framework to improve the interpretability of Al models in

network intrusion detection applications. They compare seven
models on three different real-world datasets, each with its own
set of features and problems. The system generates local and
global explanations, recognizes model- and intrusion-specific
aspects, and detects overlapping features that affect various
Al models. It also detects common patterns across detection
methodologies and has a low computational overhead, making
it suitable for real-time applications. The authors achieved an
accuracy of 99.00%. Mallampati et al. [16] created a data pre-
processing approach to increase a model’s generalizability. The
authors used k-Means SMOTE to address class dissimilarity,
proposed a hybrid feature selection approach, and examined
a Light Gradient Boosting Machine with hyperparameters
tweaked. The experiments on the UNSW-NB15 and CICIDS-
2017 datasets produced an accuracy of 90.71% and 99.98%,
respectively. Alzu’bi et al. [17] proposed a deep learning
method for detecting distributed denial of service (DDoS)
attacks in IoT environments. The authors applied deep transfer
learning and evaluated the models’ accuracy and time com-
plexity using two different datasets. Also, they used multiple
deep architectures and explainable artificial intelligence (XAI)
techniques to conduct binary and multiclass experiments. The
results showed the method’s effectiveness, with a recall of
99.39% achieved using the XAI-BiLSTM model. Jiyad et
al. [18] introduced a novel ensemble model for detecting
DDoS attacks using machine learning algorithms. The authors
utilized SHAP and LIME tools to enhance model readability
and transparency. The XGBoost ensemble model surpasses
conventional classifiers, with an exceptional accuracy rate of
97%.

III. METHODOLOGY

A. 5GC PFCP Dataset

The 5GC PFCP Intrusion Detection Dataset was created
utilizing an experimental 5G testbed with OpenSGS as the
cellular core and UERANSIM as the NG-RAN. The testbed
used a variety of 5G network functions, such as Network
Slice Selection, Network Repository, Policy Control, User
Data Management,Network Exposure, Access Management,
and Authentication Server. Suspicious behaviors were carried
out to create PFCP attacks with a virtualized UE, a virtualized
gNodeB (gNb), and an attacker instance. This paper uses
network flows obtained from transport layer and contains
four types of DoS attacks: establishment DoS, deletion DoS,
modification flood (DROP), and modification flood (DUPL).
Establishment DoS floods UPF with valid session establish-
ment and heartbeat requests, depleting resources. Delete DoS
disconnects a single UE from the DN by focusing on PDU
sessions. The modification flood (DROP) evaluates packet
handling rules to dissociate a specific UE from the DN. The
modification flood (DUPL) causes UPF to reproduce session
rules, resulting in duplicated communication over the N6
interface. Table I summarizes the dataset statistics.
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Figure 1. A visual representation of the proposed pipeline for DoS attacks Detection.

Table T
A SUMMARY OF THE OF 5GC PFCP DATASET STATISTICS
Type Training ~ Validation  Testing | Total
Estab 4,659 518 1,295 6,472
Mod1 4,660 518 1,294 6,472
Mod2 4,660 517 1,295 6,472
Deletion 4,660 518 1,294 6,472
Benign 4,660 518 1,295 6,473
Total 23,299 2,589 6,473 32,361

B. Data Preprocessing

This paper follows a systematic approch for extensive data
preparation to format the data to be fed into machine learning
(ML) and deep learning (DL) algorithms. Figure 1 presents a
visual representation of the followed pipeline to detect DoS
attacks. The pipeline starts with collecting network flows from
the transport layer and storing them in a single CSV file. Then
several data preprocessing steps were conducted, starting with
handling missing values (fillNaNs) and performing feature
engineering techniques.Feature engineering encompassed both
feature selection and feature standardization. The random
forest (RF) classifier has been used to select the top 20 most
significant features for usage in the training process. The RF
selects features for a model based on their significance in
predicting the target variable. Multiple decision trees are used
to ensure the model’s diversity. The relevance of each feature
is determined using permutation importance, which involves
shuffled features to test their impact on model correctness.
The aggregate significance score from all trees is then used
to identify the most significant characteristics for the model.
Figure 2 displays the selected features and their impotence
determined using RF. During the feature standardization step,
we scaled the data features using the standard scaler technique
to ensure they were appropriate for the model. The standard
scaler converts each feature to a zero-centered, one-standard
deviation distribution. It computes the mean and standard
deviation for each feature in the dataset, then subtracts the
mean and divides by the standard deviation. This ensures
that all features have the same scale, which is critical in
machine learning and deep learning methods. This technique
accelerates algorithm convergence during training and keeps

larger numerical ranges from dominating smaller ranges, hence
boosting model performance and stability. However, the input
data has been rearranged into the ideal format required by the
models. The data was then divided into three subsets: 70%
for training, 10% for validation, and 20% for testing. These
strategies guaranteed that the data was appropriately processed
for efficient ML and DL model training, allowing for accurate
and interpretable DoS attack detection in 5G networks.
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Figure 2. A visual representation of the feature importance using RF classifier.

C. ML and DL Models

This research uses six different machine learning and deep
learning techniques to detect Denial-of-Service (DoS) attacks.
The machine learning models used include Decision Trees
(DT) [19], Random Forests (RF) [20], and Multilayer Per-
ceptron (MLP) [21], which were chosen for their ability
to successfully categorize and identify DoS attack patterns
based on network traffic data attributes. Furthermore, the deep
learning models used include Bidirectional Long Short-Term
Memory (BiLSTM) [22], Bidirectional Gated Recurrent Unit
(BiGRU) [23], and Bidirectional Recurrent Neural Network
(BiRNN) [24], which were chosen for their ability to capture
complex temporal dependencies and intricate relationships
within sequential data, which are frequently observed in net-
work traffic during DoS attacks. The study aims to enhance
detection accuracy and robustness against various types and
intensities of DoS attacks using these algorithms, contributing
to the evolution of cybersecurity measures.
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D. Evaluation Metrics

The performance of the used machine learning and deep
learning algorithms is evaluated using metrics such as accu-
racy, precision, recall, and Fl-score. Accuracy measures the
ratio of correct predictions over the total number of prediction
instances.

TP+ TN
TP+FN+TN+ FP
Recall is the true positive rate, which measures the ratio of

true-positive results out of all actual true positive and false
negative results [25].

(D

Accuracy =
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Recall = TP+ FN )
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F1-score is the harmonic mean of precision and recall [25].

2 % Precision * Recall
F1-— = 4
seore Precision + Recall “)

E. LIME Analysis

The Local Interpretable Model-agnostic Explanations
(LIME) [26] is a machine learning technique that leverages a
dataset of altered cases around a certain prediction to provide
interpretable and locally faithful explanations. It approximates
the behavior of a black-box model in a specific location while
monitoring how the model’s predictions evolve. A simpler
model, such as linear regression, is then used to the modified
dataset, with each instance weighted by its closeness to the
original occurrence. This simpler model offers information
about the most influential aspects in the prediction. LIME
improves transparency and confidence in machine learning
models by assisting researchers in understanding model deci-
sions and potential biases on a local scale. The LIME method
can be used in different fields with various types of data
including text, image, and tabular data.

I'V. EXPERIMENTAL RESULTS AND DISCUSSION

In this paper, several machine learning and deep learning
algorithms have been used to detect malicious network flows.
The machine learning algorithms are RF, DT, and MLP.
On the other hand, the deep learning models that are used
are BiILSTM, BiGRU, and BiRNN. All the experiments are
conducted on the Colab platform. Several experiments are
performed to select the best hyper-parameters for the deep
learning models. The categorical cross entropy is used as a loss
function, and the Adam optimizer is used with a learning rate
equal to 0.01. Each model is trained for seven epochs with a
batch size of 16. Table II summarizes the hyper-parameters for
deep learning models. However, the performance of machine
learning and deep learning algorithms was very close. The
random forest classifier outperformed all the other models with
an accuracy of 99.98. The RF surpassed the other models that
were considered to have more complexity, such as BiLSTM,
BiGRU, and BiRNN, due to its robust ability to handle

overfitting owing to its ensemble nature. Also, its outstanding
performance makes it suitable to use it in the feature selection
step, where the best features can be handled by it. Therefore, it
is important to consider the performance of the deep learning
models, which will not be affected by feature selection steps
such as RF and DT. The BiLSTM outperformed the other deep
learning models with an accuracy of 98.02, precision of 98.09,
recall of 98.02, and flscore of 98.03. Figure IV presents the
confusion matrix for BiLSTM model. Figure IV displays a
comparison between validation and testing accuracies for all
the applied models. Furthermore, The study utilized explain-
able AI LIME to analyze the performance of random forest
and the role of each feature in the decision-making process
after obtaining model predictions. The most effective role was
for timestamp, flow id, and source port features. On the other
hand, features such as source IP, flow ID, and Bwd Pkt Len Std
have negative impact and slightly distract the model from the
correct class. However, the model in each class demonstrated
high confidence in the final prediction, indicating a positive
impact of the chosen features. Figure IV shows the LIME
explanation for each class using random forest classifier.

A SUMMARY OF THE DEEP LEATI?IE)I]IT\IEEI MODELS’ HYPERPARAMETERS
HyperParameter Value
Loss Function Categorical Cross-Entropy
Optimizer Adam
Epochs 7
Activation Function Softmax
Learning Rate 0.001
Batch Size 16

Early Stopping (Patience) 3
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Figure 3. A visual representation of the confusion matrix for the BiLSTM
model.
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Table III
A SUMMARY OF THE DOS ATTACKS CLASSIFICATION RESULTS.

Model

Val Acc

Test Acc

P

R F

DT
RF
MLP
BiLSTM
BiGRU
BiRNN

99.96
99.98
97.12
98.02
97.81
97.67

99.96
99.98
97.16
97.80
97.80
97.80

99.96
99.98
97.23
98.09
97.90
97.72

99.96
99.98
97.11
98.03
97.81
97.66
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Figure 4. A visual representation of validation and testing accuracies.
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Figure 5. A visual representation of the LIME explanation for features contribution in DoS attacks detection.
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V. CONCLUSION

This paper proposed a new approach for DoS detection
in the 5G network using several deep learning and machine
learning models. Also, the paper uses the explainable Al LIME
to interpret model predictions, providing a comprehensive
understanding of the model learning process. This approach
not only interprets the decision-making process but also iden-
tifies the significant contribution of data features in detecting
DoS attacks. The RF model outperformed the other models,
demonstrating the significant impact of feature selection in the
prediction results. The BiLSTM achieved a recall of 98.02,
which reflects the model’s high ability to capture malicious
traffic in the network. Future work will utilize diverse datasets
to detect various types of attacks in 5G networks.
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