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Abstract – In this paper, we analyze two versions of a texture 

synthesis algorithm, study the cases in which they fail to produce 

a successful result and present modifications that could be made 

to lessen their rates of failure. This algorithm, Model Synthesis, 

and its variation Wave Function Collapse are designed to take in 

a small sample input image, or set of image constraints, and 

produce a larger pseudorandom output image in which every 

region of the output image is locally similar to an element of the 

input image. Both versions of the algorithm accomplish this task 

by considering their output image as a grid of cells with each cell 

initially in a superposition of all possibilities for itself and 

resolving cells one by one until all cells have been resolved from 

their superposition to a fixed value. One of the key differences 

between the two versions of the algorithm is the order in which 

cells are selected to be resolved, one simply selects in a scanline 

order, while the other resolves first those cells that have the 

minimum entropy, and thus which we can be most certain of their 

eventual state. For many inputs, the minimum entropy model 

reaches a state in which its output is not consistent with the input 

and thus fails, while the scanline model does not. This paper looks 

at the cases in which this occurs and concludes that this is often 

caused by the minimum entropy model creating regions of elevated 

constraints in its solution. Finally, it presents a possible alteration 

to the algorithm which allows a minimum entropy model to avoid 

this manner of failure among a subset of test cases. 

Keywords—Model Synthesis, Wave Function Collapse, 

Texture Synthesis, Procedural Generation, Constraint Solving. 

I. INTRODUCTION 

When approaching the task of procedurally generating 
images, several algorithms and methods may be used. One 
such family of algorithm Texture Syntheses [7] of which 
Model Synthesis [3], created by Paul Merrel, and its derivative 
algorithm Wave Function Collapse [1] are versions. Model 
Synthesis was designed to take as an input a set of rules for 
creating an output image, and then produce that output image 
to conform to those rules with a level of random variation, to 
procedurally produce unique but similar results. In doing this, 
it creates a constraint satisfaction problem from the texture 
synthesis problem [8]. Maxim Gumin, who created a version 
of the algorithm titled Wave Function Collapse expanded this 
to be able to take as input an image and produce as output an 
image where every region of the output image is similar to a 
region on the input image [1][9]. These algorithms can fill a 
key role in certain digital media applications where producing 
semi-random results that conform to certain established 
requirements is critical, [2] such as procedural content 
generation, which has been discussed amongst academics in 
the past [12][13]. Fig. 1 shows a larger output image created 
from a smaller input image. 

 

Fig. 1. Wave Function Collapse example 

These algorithms function for outputs that can be broken 
down into a grid of two- or three-dimensional cells which 
themselves can be selected to be one of many possible 
outcomes. The algorithm then functions by initially setting all 
cells to be in a superposition of all possible outcomes and 
gradually selecting a cell, eliminating all but one remaining 
possibility for that cell, and then propagating any additional 
constraints added due to the determining of that cell to other 
surrounding cells in a cascading series of eliminations. This 
continues until one of two states occurs, either all cells have 
resolved themselves to a single possible outcome, or any one 
cell has eliminated all of its possible outcomes. In the former 
case, the algorithm is complete, in the latter, the algorithm has 
reached a conflict and must either be restarted or have its error 
resolved. These cases of conflict occur when there is a set of 
rules that collectively eliminate all remaining possibilities for 
a given cell [4]. 

The two key differences that differentiate the Model 
Synthesis and Wave Function Collapse algorithms, the first of 
which is that Model Synthesis uses a particular method of 
error handling, modifying by parts, that breaks down any 
individual problem into a series of sub-problems. Wave 
Function Collapse, however, typically simply restarts on each 
failure, though it is not incompatible with some forms of error 
handling. Each subproblem is much easier to solve, and thus 
complex inputs with a large chance of failure can be solved 
for large outputs [4]. However, for this paper, we are centered 
on the second difference between the two, that Model 
Synthesis resolves cells in a simple scanline order, while 
Wave Function Collapse operates in a minimum entropy 
order. Minimum entropy order will first select those cells that 
have the most certain outcome, which typically corresponds 
to those cells that have had the most options eliminated from 
their original superposition, with ties in entropy resolved 
randomly.  
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The performance, quality of output, and failure rates of the 
two algorithms are largely similar in many cases, however, 
there are several notable differences [5]. First, there are certain 
outputs in which Model Synthesis’s output is skewed by the 
directionality of a Scanline order, as seen in Fig 2 where 
Model Synthesis and Wave Function Collapse were both used 
to compute the same tile set. Model Synthesis produced the 
image on the left, where the placement of cells is directionally 
influenced to be less dynamic. Secondly, there are many cases 
in which the failure rate, and thus the performance of Wave 
Function Collapse is significantly worse. This difference in 
performance was reported in [5] where Merrel presented a 
series of data points regarding Wave Function Collapse’s 
greater failure rate yet left exploring the cause of this 
distinction to future work. 

 

Fig. 2. Directional bias sample 

In this work, we explore a cause of Wave Function 
Collapse’s tendency for failure in certain cases when 
compared to Model synthesis and present a modification to the 
Wave Function Collapse process which could accommodate 
for this flaw. 

II. PREVIOUS WORK 

In 2007 Merrel presented a paper detailing the Model 
Synthesis algorithm [3], the texture synthesis algorithm which 
Wave Function Collapse is a variation of. It was originally 
presented using constraint rules, and then later improved to 
incorporate Gumin's overlapping image modification, which 
allows it to take a whole image as input. Merrel's thesis in 
2009 further expanded on Model Synthesis [4]. 

In 2016 Gumin published Wave Function Collapse [1], a 
version of the Model Synthesis algorithm published by Merrel 
in 2009, which implemented an overlapping model for input 
generation which allows an image to be used directly as input, 
as well as implemented the minimum entropy heuristic as 
opposed to the scanline heuristic used in Model Synthesis. 
'Wave Function Collapse' refers to the visual manner in which 
the algorithm propagates constraints and is not directly related 
to the concept in physics. 

A 2017 paper by Isaac and Smith [2] analyzed the Model 
Synthesis and Wave function collapse algorithms to analyze 
them on several key heuristics, to establish the ideal 
parameters for the algorithm. One of these studied heuristics 
was the selection heuristic, the central focus of this paper. The 
results of the study indicated that both a scanline procedure 
and a minimum entropy model were similar in performance 
and failure rate, yet the scanline model used by Model 
Synthesis would introduce directional biases that may be 
undesirable. Thus, it advocated for the entropy-based model 
as it was similar in performance yet lacked certain directional 
biases for some inputs. 

A 2021 paper by Merrel put Wave Function Collapse and 
Model Synthesis into comparison and found that Wave 
Function Collapse failed far more often for certain inputs [5]. 
Merrel attributed this to largely the use of the entropy 
heuristic, rather than the lack of modifying by parts to handle 
errors. However, Merrel left to establish why this occurs in 
future work. 

In reviewing Isaac and Smith's 2017 paper, it can be seen 
that there is some advantage to be pursued in a synthesis 
technique that does not operate in scanline order, as certain 
inputs have a directional bias. However, it should be 
recognized that in many inputs, such as those presented in 
Merrel's 2021 report, directional bias does not meaningfully 
affect the results of the output. In reviewing Merrel's 2021 
paper, it is clear that though Model Synthesis and Wave 
Function Collapse typically have similar performance metrics, 
there are certain cases where Wave Function Collapse 
performs far worse. Thus, it is necessary to find a manner in 
which the benefits of the two models can be combined to 
achieve results unlikely to reach errors with no directional 
biases in output. 

III. BACKGROUND INFORMATION 

In both the Model Synthesis and Wave Function Collapse 
algorithms, when a tile is selected to be resolved the same 
considerations are made. First, it randomly determines from 
the set of all non-eliminated possibilities a single option that it 
shall use and eliminates all others. This determination may 
give equal priority to each possibility or may use a weighted 
assignment depending on input parameters. Once all 
remaining possibilities are eliminated, it then begins the 
propagation step. 

In the propagation step, the additional constraints that stem 
from this determination are propagated out to their neighbors, 
and from them to their neighbors, and so on. The purpose of 
this step is to ensure that the valid options for future cells 
remain consistent with those currently established constraints, 
to prevent the algorithm from removing all legal constraints 
from a cell and reaching a failure state. However, as noted in 
Merrel's thesis, maintaining perfect consistency is an NP-hard 
problem, and thus an approximation to this perfect 
consistency is used [4]. 

To achieve this imperfect approximation, the AC3 or AC4 
algorithm is used [5][10][11], to propagate the constraints in a 
manner that approximates the perfect set of consistent options. 
This process operates by pathing, that is a certain value for a 
cell will not be eliminated provided there is a legal path of 
cells from the current cell to the intended cell that would 
permit that cell to hold the value in question. This concession 
to the performance of the algorithm is what allows failures to 
occur, and for certain inputs is far more prevalent with a 
scanline heuristic. 

IV. METHOD 

I used the source code provided publicly by Gumin, which 
has an inbuilt scanline and minimum entropy functionality. I 
then modified the code to save a copy of the image currently 
generated at each step, and to display not-yet selected cells as 
colored by their number of remaining options available to 
visualize the manner in which the constraints are propagated 
across results. I then ran the inputs that Merrel presented had 
a high difference in success rates between the two versions of 
the algorithm. 
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After this, I then reviewed large numbers of failure cases 
for the two algorithms to review the differences and possible 
causes of their failure. After reaching a hypothesis, I then 
implemented a modification to the minimum entropy 
algorithm to attempt to correct this perceived failing and 
finally attempted the test set again to monitor for the efficacy 
of the modification 

V. ANALYSIS OF DATA 

The attached findings are the results achieved from 
running the inputs presented by Merrel in 2021 with the 
scanline and minimum entropy selection heuristics, without 
the use of modifying by parts. As addressed by Merrel, the 
data affirms that the cause of the failure rate for Wave 
Function Collapse is largely caused by the minimum entropy 
heuristic, rather than the lack of modifying by parts. Of note 
is that, for some inputs, the data shows that the scanline 
heuristic can't achieve a failed result even without modifying 
by parts, as evidenced by the data in Fig 3. 

Tileset Errors (Max 100 Trials) 

 Scanline Min Entropy 

Summer 100x100 0 100 

Summer 200x200 0 100 

Castle 100x100 0 100 

Castle 200x200 0 100 

Knots Dense 

100x100 0 1 

Knots Dense 

200x200 0 100 

Knots TE 100x100 0 100 

Knots TE 200x200 0 100 

Knots T 100x100 0 4 

Knots T 200x200 0 100 

Knots CE 100x100 0 23 

Knots CE 200x200 0 100 

Rooms 100x100 0 0 

Rooms 200x200 0 32 

RedDot200x200 0 100 

Skew1 200x00 4 100 

Cat 400x400 0 6 

 

Fig. 3. Table of performance differences between MS and WFC 

This data indicates that for certain inputs, the scanline 
heuristic never allows for a local region in the output to be 
formed in which the constraints are strict enough to eliminate 
all legal options for a cell. For instance, the input subset 
‘Knots TE’ is a simple problem set in which all cells start in a 
superposition between five possible options, which are an 
empty space and a T intersection shape in each of four possible 
rotations, shown in Fig 4. The rules for placement forces 
empty spaces, such as those from empty cells and the missing 
direction of the T intersection to align with other empty 
spaces, and for the lines of T intersections to align with other 
T intersection lines. 

 

Fig. 4. Five possible cell evaluations for Knots TE 

For a scanline selection heuristic, the Knots TE input set 
is a trivially easy problem. In Scanline procedures, it is typical 
that most cells will be resolved with two immediate 
adjacencies, the adjacency from the current cell, and the 
adjacency from the cell of the last completed row. This is 
shown in fig 5, where the next cell to evaluate in a left-to-right 
order always have two adjacent cells. The only instances in 
which scanline order will evaluate a node with more than two 
adjacencies is when the previous row propagated enough 
constraints onto a future row to cause it to resolve down to 1 
remaining option before being selected by the scanline 
heuristic. 

 

Fig. 5. Knots TE midway through execution. 

In the scanline heuristic, with two immediate adjacencies 
the Knots TE model considers four possible scenarios, that 
both the adjacent cells are empty, that both have an incoming 
line, and that one does and the other does not for both 
incoming cells. For Knots TE, there is always a legal option 
for each possible case, and that option never cascades 
sufficiently to cause adjacent cells to be forcibly resolved. 
Thus, it is clear how the Knots TE input does not fail for the 
Scanline model, as it requires more than two adjacencies to 
fail, and Knots TE will only ever consider cells with 2 or fewer 
adjacencies. Note that this is untrue for the Knots TE input if 
the output image is configured to wrap such that the 
constraints of the first line act upon the last line, as this causes 
some cells to resolve with more than two adjacencies, which 
permits for failure. 

In the minimum entropy model, however, it is possible to 
produce a circumstance in which a cell is resolved with more 
than two immediate adjacencies. Consider the case below, in 
which multiple adjacencies have occurred to cause the Knots 
TE input to fail, as minimum entropy simply selects a cell with 
the minimum current entropy and does not optimize for 
reducing the overall constraints of the output. This allows a 
series of minimum entropy satisfying choices to be made 
which causes a region of the output to begin to close in on 
itself, dramatically increasing the rate at which certain inputs 
fail. This is seen in Fig 6, which chose a region beginning to 
close in on itself, dramatically increasing the chance of failure. 
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Fig. 6. An example of an elevated region of constraint. 

VI. PROPOSED SOLUTION 

As an examination of many of the cases of failure has 
presented that failures often occur from regions of elevated 
constraints caused by the algorithm ‘folding in’ on itself and 
reaching states with many overlapping constraints, I shall now 
present an alteration that could be made to the algorithm to 
accommodate for this occurring, and accompanying data 
regarding the effect the alteration has on the failure rate of test 
cases. 

The modified portion of the algorithm occurs during the 
cell selection process, where each cell is sequentially checked 
for its entropy, and the cell with the minimum entropy 
including a fixed random factor to resolve ties is selected to 
be resolved. For each cell whose entropy plus a random factor 
is the smallest yet found, an additional requirement must be 
satisfied before being accepted as the next cell to be resolved. 
First, the four cardinally adjacent cells are checked to see if 
they have resolved into a single cell. For each adjacent cell 
that has not resolved to a single value, the algorithm continues 
to check all the cells in that direction from the origin cell to 
see if a future cell is reached. 

If all directions from the origin cell either have a resolved 
cell immediately adjacent to the cell in question or do not have 
any resolved cells from the origin cell to the edge of the 
output, then the cell is a valid placement. If this is not the case, 
the algorithm then evaluates whether there are any cells in the 
opposite direction of the direction checked such that resolving 
the origin would be resolving a cell between two cells. If this 
is the case, the cell is considered both valid and a priority cell, 
as it is part of a gap between two cells and must be resolved 
as quickly as possible, before the gap can be worsened. If not, 
then the cell is not currently a valid cell to resolve, as those 
cells between the origin cell and the resolved cell along its 
directional path must be resolved first. 

 

 

 

Fig. 7. Modified algorithm running example. 

For example, in Fig 7 the purple cell would be a legal 
option to resolve next, as south and east are already resolved, 
and north and west have no cells anywhere along their paths. 
The blue and yellow cells are illegal options, as there are 
empty cells to their south, with a resolved cell along their path. 
However, if the yellow cell were already resolved, the blue 

cell would be legal and have priority to resolve this 
discrepancy. 

Thus, the algorithm can avoid many cases where an 
elevated region of constraint would be created due to many 
adjacencies, and when such a region begins to form due to 
propagated constraints, the algorithm prioritizes resolving this 
discrepancy first before the flaw can be exacerbated. When 
executing this modified algorithm on the input problems, the 
failure rates presented in Fig 8 are given. Note, however, that 
runtimes are worse in this model, thus 400x400 is impractical 
to compute. Thus, this flaw and alteration resolves many of 
the failure cases of a minimum entropy heuristic model yet 
does not provide a complete resolution of the disparity 
between scanline and minimum entropy performance. It 
should further be noted that this process is certainly more 
computationally expensive than simply proceeding in scanline 
order, which provides these benefits in a less computationally 
complex manner. 

Tile set 

Errors (Max 100 

Trials)  

 Scanline  

Min 

Entropy 

Min Entropy 

with 

Modification 

Summer 100x100 0 100 100 

Summer 200x200 0 100 100 

Castle 100x100 0 100 100 

Castle 200x200 0 100 100 

Knots Dense 

100x100 0 1 0 

Knots Dense 

200x200  0 100 0 

Knots TE 

100x100 0 100 0 

Knots TE 

200x200 0 100 0 

Knots T 100x100 0 4 0 

Knots T 200x200 0 100 0 

Knots CE 

100x100 0 23 0 

Knots CE 

200x200 0 100 0 

Rooms 100x100 0 0 0 

Rooms 200x200 0 32 0 

RedDot200x200 0 100 0 

Skew1 200x00 4 100 0 

Cat 400x400 0 6 N/A 

 

Fig. 8. Failure rates for modified algorithm 

VII. FUTURE WORK 

In resolving this issue, more work must be done to identify 
the nature of the minimum entropy heuristic’s failures in those 
cases not resolved by the presented modification to the 
algorithm, as well as to identify more efficient manners of 
cleanly solving for the discrepancy of minimum entropy. 
Alternatively, if the scanline heuristic’s directional biasing 
were resolved, it may become preferable to discontinue the 
minimum entropy heuristic altogether. Further, promising 
work has been done by Merrel in adapting wholly different 
manners of solving the task which does not depend on a grid-
based solution [6]. 

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)



VIII. CONCLUSION 

In conclusion, after analysis of the cases of failure of the 
Wave Function Collapse algorithm for certain input cases, a 
key cause of failure stems from elevated regions of constraints 
caused by the folding-in effect among resolved cells. For 
certain inputs, this failure can be resolved by modifying the 
algorithm to avoid creating case scenarios where such a failure 
may occur. 
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