
Analysis of Scanline and Minimum Entropy

Selection Heuristics in Model Synthesis and Wave

Function Collapse

Lucas Harvey and Gautam Srivastava
Dept. of Math and Computer Science, Brandon University, Canada

{harveylg42, srivastavag}@brandonu.ca

Abstract – In this paper, we analyze two versions of a texture

synthesis algorithm, study the cases in which they fail to produce

a successful result and present modifications that could be made

to lessen their rates of failure. This algorithm, Model Synthesis,

and its variation Wave Function Collapse are designed to take in

a small sample input image, or set of image constraints, and

produce a larger pseudorandom output image in which every

region of the output image is locally similar to an element of the

input image. Both versions of the algorithm accomplish this task

by considering their output image as a grid of cells with each cell

initially in a superposition of all possibilities for itself and

resolving cells one by one until all cells have been resolved from

their superposition to a fixed value. One of the key differences

between the two versions of the algorithm is the order in which

cells are selected to be resolved, one simply selects in a scanline

order, while the other resolves first those cells that have the

minimum entropy, and thus which we can be most certain of their

eventual state. For many inputs, the minimum entropy model

reaches a state in which its output is not consistent with the input

and thus fails, while the scanline model does not. This paper looks

at the cases in which this occurs and concludes that this is often

caused by the minimum entropy model creating regions of elevated

constraints in its solution. Finally, it presents a possible alteration

to the algorithm which allows a minimum entropy model to avoid

this manner of failure among a subset of test cases.

Keywords—Model Synthesis, Wave Function Collapse,

Texture Synthesis, Procedural Generation, Constraint Solving.

I. INTRODUCTION

When approaching the task of procedurally generating
images, several algorithms and methods may be used. One
such family of algorithm Texture Syntheses [7] of which
Model Synthesis [3], created by Paul Merrel, and its derivative
algorithm Wave Function Collapse [1] are versions. Model
Synthesis was designed to take as an input a set of rules for
creating an output image, and then produce that output image
to conform to those rules with a level of random variation, to
procedurally produce unique but similar results. In doing this,
it creates a constraint satisfaction problem from the texture
synthesis problem [8]. Maxim Gumin, who created a version
of the algorithm titled Wave Function Collapse expanded this
to be able to take as input an image and produce as output an
image where every region of the output image is similar to a
region on the input image [1][9]. These algorithms can fill a
key role in certain digital media applications where producing
semi-random results that conform to certain established
requirements is critical, [2] such as procedural content
generation, which has been discussed amongst academics in
the past [12][13]. Fig. 1 shows a larger output image created
from a smaller input image.

Fig. 1. Wave Function Collapse example

These algorithms function for outputs that can be broken
down into a grid of two- or three-dimensional cells which
themselves can be selected to be one of many possible
outcomes. The algorithm then functions by initially setting all
cells to be in a superposition of all possible outcomes and
gradually selecting a cell, eliminating all but one remaining
possibility for that cell, and then propagating any additional
constraints added due to the determining of that cell to other
surrounding cells in a cascading series of eliminations. This
continues until one of two states occurs, either all cells have
resolved themselves to a single possible outcome, or any one
cell has eliminated all of its possible outcomes. In the former
case, the algorithm is complete, in the latter, the algorithm has
reached a conflict and must either be restarted or have its error
resolved. These cases of conflict occur when there is a set of
rules that collectively eliminate all remaining possibilities for
a given cell [4].

The two key differences that differentiate the Model
Synthesis and Wave Function Collapse algorithms, the first of
which is that Model Synthesis uses a particular method of
error handling, modifying by parts, that breaks down any
individual problem into a series of sub-problems. Wave
Function Collapse, however, typically simply restarts on each
failure, though it is not incompatible with some forms of error
handling. Each subproblem is much easier to solve, and thus
complex inputs with a large chance of failure can be solved
for large outputs [4]. However, for this paper, we are centered
on the second difference between the two, that Model
Synthesis resolves cells in a simple scanline order, while
Wave Function Collapse operates in a minimum entropy
order. Minimum entropy order will first select those cells that
have the most certain outcome, which typically corresponds
to those cells that have had the most options eliminated from
their original superposition, with ties in entropy resolved
randomly.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

979-8-3503-5469-0/24/$31.00 ©2024 IEEE

The performance, quality of output, and failure rates of the
two algorithms are largely similar in many cases, however,
there are several notable differences [5]. First, there are certain
outputs in which Model Synthesis’s output is skewed by the
directionality of a Scanline order, as seen in Fig 2 where
Model Synthesis and Wave Function Collapse were both used
to compute the same tile set. Model Synthesis produced the
image on the left, where the placement of cells is directionally
influenced to be less dynamic. Secondly, there are many cases
in which the failure rate, and thus the performance of Wave
Function Collapse is significantly worse. This difference in
performance was reported in [5] where Merrel presented a
series of data points regarding Wave Function Collapse’s
greater failure rate yet left exploring the cause of this
distinction to future work.

Fig. 2. Directional bias sample

In this work, we explore a cause of Wave Function
Collapse’s tendency for failure in certain cases when
compared to Model synthesis and present a modification to the
Wave Function Collapse process which could accommodate
for this flaw.

II. PREVIOUS WORK

In 2007 Merrel presented a paper detailing the Model
Synthesis algorithm [3], the texture synthesis algorithm which
Wave Function Collapse is a variation of. It was originally
presented using constraint rules, and then later improved to
incorporate Gumin's overlapping image modification, which
allows it to take a whole image as input. Merrel's thesis in
2009 further expanded on Model Synthesis [4].

In 2016 Gumin published Wave Function Collapse [1], a
version of the Model Synthesis algorithm published by Merrel
in 2009, which implemented an overlapping model for input
generation which allows an image to be used directly as input,
as well as implemented the minimum entropy heuristic as
opposed to the scanline heuristic used in Model Synthesis.
'Wave Function Collapse' refers to the visual manner in which
the algorithm propagates constraints and is not directly related
to the concept in physics.

A 2017 paper by Isaac and Smith [2] analyzed the Model
Synthesis and Wave function collapse algorithms to analyze
them on several key heuristics, to establish the ideal
parameters for the algorithm. One of these studied heuristics
was the selection heuristic, the central focus of this paper. The
results of the study indicated that both a scanline procedure
and a minimum entropy model were similar in performance
and failure rate, yet the scanline model used by Model
Synthesis would introduce directional biases that may be
undesirable. Thus, it advocated for the entropy-based model
as it was similar in performance yet lacked certain directional
biases for some inputs.

A 2021 paper by Merrel put Wave Function Collapse and
Model Synthesis into comparison and found that Wave
Function Collapse failed far more often for certain inputs [5].
Merrel attributed this to largely the use of the entropy
heuristic, rather than the lack of modifying by parts to handle
errors. However, Merrel left to establish why this occurs in
future work.

In reviewing Isaac and Smith's 2017 paper, it can be seen
that there is some advantage to be pursued in a synthesis
technique that does not operate in scanline order, as certain
inputs have a directional bias. However, it should be
recognized that in many inputs, such as those presented in
Merrel's 2021 report, directional bias does not meaningfully
affect the results of the output. In reviewing Merrel's 2021
paper, it is clear that though Model Synthesis and Wave
Function Collapse typically have similar performance metrics,
there are certain cases where Wave Function Collapse
performs far worse. Thus, it is necessary to find a manner in
which the benefits of the two models can be combined to
achieve results unlikely to reach errors with no directional
biases in output.

III. BACKGROUND INFORMATION

In both the Model Synthesis and Wave Function Collapse
algorithms, when a tile is selected to be resolved the same
considerations are made. First, it randomly determines from
the set of all non-eliminated possibilities a single option that it
shall use and eliminates all others. This determination may
give equal priority to each possibility or may use a weighted
assignment depending on input parameters. Once all
remaining possibilities are eliminated, it then begins the
propagation step.

In the propagation step, the additional constraints that stem
from this determination are propagated out to their neighbors,
and from them to their neighbors, and so on. The purpose of
this step is to ensure that the valid options for future cells
remain consistent with those currently established constraints,
to prevent the algorithm from removing all legal constraints
from a cell and reaching a failure state. However, as noted in
Merrel's thesis, maintaining perfect consistency is an NP-hard
problem, and thus an approximation to this perfect
consistency is used [4].

To achieve this imperfect approximation, the AC3 or AC4
algorithm is used [5][10][11], to propagate the constraints in a
manner that approximates the perfect set of consistent options.
This process operates by pathing, that is a certain value for a
cell will not be eliminated provided there is a legal path of
cells from the current cell to the intended cell that would
permit that cell to hold the value in question. This concession
to the performance of the algorithm is what allows failures to
occur, and for certain inputs is far more prevalent with a
scanline heuristic.

IV. METHOD

I used the source code provided publicly by Gumin, which
has an inbuilt scanline and minimum entropy functionality. I
then modified the code to save a copy of the image currently
generated at each step, and to display not-yet selected cells as
colored by their number of remaining options available to
visualize the manner in which the constraints are propagated
across results. I then ran the inputs that Merrel presented had
a high difference in success rates between the two versions of
the algorithm.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

After this, I then reviewed large numbers of failure cases
for the two algorithms to review the differences and possible
causes of their failure. After reaching a hypothesis, I then
implemented a modification to the minimum entropy
algorithm to attempt to correct this perceived failing and
finally attempted the test set again to monitor for the efficacy
of the modification

V. ANALYSIS OF DATA

The attached findings are the results achieved from
running the inputs presented by Merrel in 2021 with the
scanline and minimum entropy selection heuristics, without
the use of modifying by parts. As addressed by Merrel, the
data affirms that the cause of the failure rate for Wave
Function Collapse is largely caused by the minimum entropy
heuristic, rather than the lack of modifying by parts. Of note
is that, for some inputs, the data shows that the scanline
heuristic can't achieve a failed result even without modifying
by parts, as evidenced by the data in Fig 3.

Tileset Errors (Max 100 Trials)

 Scanline Min Entropy

Summer 100x100 0 100

Summer 200x200 0 100

Castle 100x100 0 100

Castle 200x200 0 100

Knots Dense

100x100 0 1

Knots Dense

200x200 0 100

Knots TE 100x100 0 100

Knots TE 200x200 0 100

Knots T 100x100 0 4

Knots T 200x200 0 100

Knots CE 100x100 0 23

Knots CE 200x200 0 100

Rooms 100x100 0 0

Rooms 200x200 0 32

RedDot200x200 0 100

Skew1 200x00 4 100

Cat 400x400 0 6

Fig. 3. Table of performance differences between MS and WFC

This data indicates that for certain inputs, the scanline
heuristic never allows for a local region in the output to be
formed in which the constraints are strict enough to eliminate
all legal options for a cell. For instance, the input subset
‘Knots TE’ is a simple problem set in which all cells start in a
superposition between five possible options, which are an
empty space and a T intersection shape in each of four possible
rotations, shown in Fig 4. The rules for placement forces
empty spaces, such as those from empty cells and the missing
direction of the T intersection to align with other empty
spaces, and for the lines of T intersections to align with other
T intersection lines.

Fig. 4. Five possible cell evaluations for Knots TE

For a scanline selection heuristic, the Knots TE input set
is a trivially easy problem. In Scanline procedures, it is typical
that most cells will be resolved with two immediate
adjacencies, the adjacency from the current cell, and the
adjacency from the cell of the last completed row. This is
shown in fig 5, where the next cell to evaluate in a left-to-right
order always have two adjacent cells. The only instances in
which scanline order will evaluate a node with more than two
adjacencies is when the previous row propagated enough
constraints onto a future row to cause it to resolve down to 1
remaining option before being selected by the scanline
heuristic.

Fig. 5. Knots TE midway through execution.

In the scanline heuristic, with two immediate adjacencies
the Knots TE model considers four possible scenarios, that
both the adjacent cells are empty, that both have an incoming
line, and that one does and the other does not for both
incoming cells. For Knots TE, there is always a legal option
for each possible case, and that option never cascades
sufficiently to cause adjacent cells to be forcibly resolved.
Thus, it is clear how the Knots TE input does not fail for the
Scanline model, as it requires more than two adjacencies to
fail, and Knots TE will only ever consider cells with 2 or fewer
adjacencies. Note that this is untrue for the Knots TE input if
the output image is configured to wrap such that the
constraints of the first line act upon the last line, as this causes
some cells to resolve with more than two adjacencies, which
permits for failure.

In the minimum entropy model, however, it is possible to
produce a circumstance in which a cell is resolved with more
than two immediate adjacencies. Consider the case below, in
which multiple adjacencies have occurred to cause the Knots
TE input to fail, as minimum entropy simply selects a cell with
the minimum current entropy and does not optimize for
reducing the overall constraints of the output. This allows a
series of minimum entropy satisfying choices to be made
which causes a region of the output to begin to close in on
itself, dramatically increasing the rate at which certain inputs
fail. This is seen in Fig 6, which chose a region beginning to
close in on itself, dramatically increasing the chance of failure.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

Fig. 6. An example of an elevated region of constraint.

VI. PROPOSED SOLUTION

As an examination of many of the cases of failure has
presented that failures often occur from regions of elevated
constraints caused by the algorithm ‘folding in’ on itself and
reaching states with many overlapping constraints, I shall now
present an alteration that could be made to the algorithm to
accommodate for this occurring, and accompanying data
regarding the effect the alteration has on the failure rate of test
cases.

The modified portion of the algorithm occurs during the
cell selection process, where each cell is sequentially checked
for its entropy, and the cell with the minimum entropy
including a fixed random factor to resolve ties is selected to
be resolved. For each cell whose entropy plus a random factor
is the smallest yet found, an additional requirement must be
satisfied before being accepted as the next cell to be resolved.
First, the four cardinally adjacent cells are checked to see if
they have resolved into a single cell. For each adjacent cell
that has not resolved to a single value, the algorithm continues
to check all the cells in that direction from the origin cell to
see if a future cell is reached.

If all directions from the origin cell either have a resolved
cell immediately adjacent to the cell in question or do not have
any resolved cells from the origin cell to the edge of the
output, then the cell is a valid placement. If this is not the case,
the algorithm then evaluates whether there are any cells in the
opposite direction of the direction checked such that resolving
the origin would be resolving a cell between two cells. If this
is the case, the cell is considered both valid and a priority cell,
as it is part of a gap between two cells and must be resolved
as quickly as possible, before the gap can be worsened. If not,
then the cell is not currently a valid cell to resolve, as those
cells between the origin cell and the resolved cell along its
directional path must be resolved first.

Fig. 7. Modified algorithm running example.

For example, in Fig 7 the purple cell would be a legal
option to resolve next, as south and east are already resolved,
and north and west have no cells anywhere along their paths.
The blue and yellow cells are illegal options, as there are
empty cells to their south, with a resolved cell along their path.
However, if the yellow cell were already resolved, the blue

cell would be legal and have priority to resolve this
discrepancy.

Thus, the algorithm can avoid many cases where an
elevated region of constraint would be created due to many
adjacencies, and when such a region begins to form due to
propagated constraints, the algorithm prioritizes resolving this
discrepancy first before the flaw can be exacerbated. When
executing this modified algorithm on the input problems, the
failure rates presented in Fig 8 are given. Note, however, that
runtimes are worse in this model, thus 400x400 is impractical
to compute. Thus, this flaw and alteration resolves many of
the failure cases of a minimum entropy heuristic model yet
does not provide a complete resolution of the disparity
between scanline and minimum entropy performance. It
should further be noted that this process is certainly more
computationally expensive than simply proceeding in scanline
order, which provides these benefits in a less computationally
complex manner.

Tile set

Errors (Max 100

Trials)

 Scanline

Min

Entropy

Min Entropy

with

Modification

Summer 100x100 0 100 100

Summer 200x200 0 100 100

Castle 100x100 0 100 100

Castle 200x200 0 100 100

Knots Dense

100x100 0 1 0

Knots Dense

200x200 0 100 0

Knots TE

100x100 0 100 0

Knots TE

200x200 0 100 0

Knots T 100x100 0 4 0

Knots T 200x200 0 100 0

Knots CE

100x100 0 23 0

Knots CE

200x200 0 100 0

Rooms 100x100 0 0 0

Rooms 200x200 0 32 0

RedDot200x200 0 100 0

Skew1 200x00 4 100 0

Cat 400x400 0 6 N/A

Fig. 8. Failure rates for modified algorithm

VII. FUTURE WORK

In resolving this issue, more work must be done to identify
the nature of the minimum entropy heuristic’s failures in those
cases not resolved by the presented modification to the
algorithm, as well as to identify more efficient manners of
cleanly solving for the discrepancy of minimum entropy.
Alternatively, if the scanline heuristic’s directional biasing
were resolved, it may become preferable to discontinue the
minimum entropy heuristic altogether. Further, promising
work has been done by Merrel in adapting wholly different
manners of solving the task which does not depend on a grid-
based solution [6].

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

VIII. CONCLUSION

In conclusion, after analysis of the cases of failure of the
Wave Function Collapse algorithm for certain input cases, a
key cause of failure stems from elevated regions of constraints
caused by the folding-in effect among resolved cells. For
certain inputs, this failure can be resolved by modifying the
algorithm to avoid creating case scenarios where such a failure
may occur.

REFERENCES

[1] M. Gumin, “Wave function collapse”, 2016.

[2] I. Karth, & A. Smith. “WaveFunctionCollapse: Content Generation via
Constraint Solving and Machine Learning”. In IEEE Transactions on
Games, vol. 14, no. 3, pp. 364-376, 2022.

[3] P. Merrel, “Example-based model synthesis,” in I3D ’07: Symposium
on Interactive 3D graphics and games, ACM Press, 105–112, 2007.

[4] P. Merrel, “Model Synthesis”. PhD thesis, University of North Carolina
at Chapel Hill, 2009.

[5] P. Merrel, Comparing Model Synthesis and Wave Function Collapse,
2021.

[6] Merrell. Example-Based Procedural Modeling Using Graph
Grammars. ACM Transactions on Graphics, 2023.

[7] A. Efros and T. Leung. “Texture Synthesis by Non-parametric
Sampling”. IEEE International Conference on Computer Vision, 1999.

[8] A. Mackworth. “Consistency in Networks of Relations.” Artificial
Intelligence, 1977.

[9] P. Harrison. “Image Texture Tools.” Clayton School of Information
Technology, 2005.

[10] R. Wallace. “Why AC-3 is Almost Always Better than AC-4 for
Establishing Arc Consistency in CSPs” Proceedings of the 13th
International Joint Conference on Artificial Intelligence, 1993.

[11] R. Mohr and R Henderson. “Arc and path consistency revisited.”
Artificial Intelligence, 1986.

[12] A. Smith and M. Mateas. “Answer set programming for procedural
content generation: a design space approach.” IEEE Transactions on
Computer Intelligence and AI in Games, 2011.

[13] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgard, A. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml).” IEEE Transactions on Computer
Intelligence and AI in Games, 2018.

2024 International Conference on Intelligent Computing, Communication, Networking and Services (ICCNS)

