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Abstract—Field Programmable Gate Arrays (FPGAs) 
combined with deep learning algorithms exhibit exceptional 
efficiency in the field of medical imaging. Breast cancer is one of 
the most frequently diagnosed cancers and remains the leading 
cause of mortality among women worldwide. In recent years, 
convolutional neural networks (CNNs) have garnered 
significant attention for their effectiveness in breast cancer 
segmentation and classification. Nevertheless, CNNs demand 
substantial computational power to perform real-time 
classification tasks. To address these challenges, this paper 
proposes a hardware-software co-design for real-time breast 
cancer classification utilizing FPGAs. The software 
implementation has been implemented using TensorFlow, while 
the FPGA implementation, design, and verification are 
conducted using Vivado 2023.1. The proposed custom CNN 
architecture achieves 99.76% classification accuracy with the 
BUSI breast ultrasound dataset and maintains low resource 
utilization. Evaluated on the Xilinx ZCU102 FPGA board, the 
architecture delivers a throughput of 4949 frames per second 
(FPS) while consuming only 3.5W of power. The evaluation 
results underscore the efficacy and effectiveness of the proposed 
custom CNN architecture for breast cancer classification. 
Furthermore, the architecture holds potential for application in 
the classification of other types of cancer classification. 
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I. INTRODUCTION 

Deep learning (DL) has made significant advancements 
over the years, with its popularity surging in the past decade 
due to the proliferation of powerful computing systems and 
the increased deployment of DL systems. CNN-based medical 
image processing applications have become crucial in this era, 
where they contribute to notable improvements in image 
quality and the extraction of valuable information from 
images. To leverage the high computational power of CNNs 
for real-time image classification tasks, they are often paired 
with hardware accelerators. A CNN-based hardware 
accelerator can be a viable solution for medical image 
processing, particularly for cancer detection and 
classification. FPGA-based hardware accelerators have 
emerged as promising platforms for various applications, 
including object detection [1], medical image processing [2], 
edge computing [3, 4], wave generation [5], hardware design 
[6], safety critical embedded system [7], advanced driver 
assistance systems [8], and accelerating CNNs [9], owing to 
their superior energy efficiency and reconfigurable nature.   

Breast cancer is a leading cause of death among women 
globally. According to the World Health Organization 
(WHO), the number of breast cancer cases is projected to 
reach 20 million by 2025 [10]. Various DL techniques, such 

as CNNs [11], support vector machines (SVM) [12], and You 
Only Look Once (YOLO) [13], along with different imaging 
methods like mammography [14], magnetic resonance 
imaging (MRI) [15], and breast ultrasound [16], are 
employed to analyze images for potential cancer detection. 
While human specialists traditionally perform image 
analysis, computer-aided diagnostic tools offer faster and 
more accurate assessments. CNNs have shown promising 
results across multiple approaches for breast cancer 
classification. Due to the diverse approaches of CNNs, 
custom CNN architectures are necessary for breast cancer 
image classification to minimize computational complexity 
and achieve real-time classification. This paper proposes a 
hardware-software co-design approach to develop a domain-
specific custom CNN architecture and evaluate its 
performance for real-time breast cancer classification using 
FPGAs. The key contributions of this paper are summarized 
as follows: 

1. Design and development of a custom CNN 
architecture for breast cancer classification using 
TensorFlow. 

2. Implementing Register Transfer Level (RTL) design 
of the proposed CNN architecture using Xilinx 
Vivado.  

3. Evaluating the performance of the custom CNN based 
hardware accelerator through simulations in Xilinx 
and experimental testing on the Xilinx ZCU102 
FPGA board. 

II. RELATED WORK 

Gupta et al. [17] present an optimized fully resolution-
CNN (FR-CNN) for breast tumor segmentation on the FPGA 
platform. The FPGA implementation of FR-CNN 
incorporates both fixed and floating-point operations to strike 
a balance between accuracy and hardware complexity. 
Typically, the FR-CNN network model necessitates numerous 
adder and multiplier units, leading to increased power 
consumption and area usage. To address this, an optimized 
Vedic multiplier utilizing a carry select adder with Simplified 
Sum-Carry Generation Logic has been introduced. 
Furthermore, the particle swarm optimization algorithm is 
employed to fine-tune the parameters in the network model. 
In experimental trials, the proposed model attained an 
accuracy of 96.89%, precision of 95.84%, F-score of 96.08%, 
specificity of 96.73% with mean absolute error of 0.87. 
Additionally, the FPGA implementation of the proposed 
model consumed only 0.6124W of power and utilized a Look-
Up Table (LUT) count of 12,167. However, this method 
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utilizes image resizing, which may lead to aspect ratio 
distortion, and there remains a need to improve the accuracy 
of this system. 

Laxmisagar et al. [12] propose a pipelined architecture for 
a linear SVM classifier implemented in Verilog Hardware 
Description Language (HDL), using single-precision IEEE 
standard 754 number format to enable rapid processing. The 
study focuses on hardware resource utilization and timing 
analysis with the WBCD breast cancer datasets. Key 
performance metrics, including resource utilization, on-chip 
power consumption, and static timing analysis, are evaluated. 
Both software and hardware implementations are used to 
compute the accuracy rates for performance evaluation. The 
pipelined SVM architecture is designed using Verilog HDL 
and synthesized with the Vivado simulation tool, then 
implemented on the Xilinx KC705 Kintex-7 evaluation board. 
This study highlights the design of an SVM linear classifier 
with a pipelined architecture for FPGA implementation, 
leveraging FPGAs' advanced parallel computation capabilities 
for fast data classification, enabling the accuracy of 91.08% 
while consuming 1.17W power. However, the classification 
accuracy of this system is not adequate.  

Kayalvizhi et al. [14] propose a custom CNN architecture 
aimed at reducing the number of parameters and 
computational complexity for hardware deployment. This 
method uses CNNs to classify breast carcinoma from digital 
mammogram images. The quantized neural network is 
accelerated using FPGAs to enhance detection speed and 
reduce power consumption while maintaining high accuracy. 
This approach offers a new tool to assist radiologists in 
diagnosing breast cancer from digital mammograms. 
Evaluations on benchmark datasets such as DDSM, MIAS, 
and INbreast show high classification rates, with an accuracy 
of 99.38% on the combined dataset. However, the proposed 
system utilizes very small datasets, and the throughput needs 
improvement to be viable for real-time image classification 
systems. 

Maria et al. [18] propose an early breast cancer detection 
approach based on the BI-RADS score. This system uses a 
bespoke Digital Mammogram Diagnostic Convolutional 
Neural Network (DMD-CNN) model to categorize 
mammogram breast lesions. It employs PYNQ-based 
acceleration using the Artix 7 FPGA for the hardware 
acceleration of the DMD-CNN model, achieving a 
performance accuracy of 98.2%, outperforming current state-
of-the-art methods. Comparative analysis shows a 4% 
increase in accuracy and a recognition rate of 96% over 
existing models. The system was tested using k-fold cross-
validation, with reported accuracy scores of 96.2%, 97.5%, 
and 98.1%, respectively. Extensive testing on mammography 
datasets demonstrated improved performance. The FPGA-
based solution optimizes resource utilization and reduces 
power consumption to 3.12 W compared to GPU acceleration 
with an classification throughput of 91 FPS. However, this 
method resizes images to 64×64 pixels, potentially causing 
aspect ratio distortion, and there is still a need for 
improvements in the system's accuracy. 

Saeed et al. [11] introduced a CNN-based breast cancer 
classification algorithm tailored for FPGAs utilizing full-field 
digital mammography (FFDM) images. This method 
incorporates a Deep-learning Processing Unit (DPU) 
specifically designed for FPGAs to implement the CNN 
hardware. The CNN inference on the proposed platform yields 

a notable 1.6x speed-up factor and a remarkable 91.5% 
reduction in energy consumption compared to the traditional 
general-purpose multi-core Central Processing Unit (CPU). 
However, this technique involves resizing images to 100×100 
pixels, which could potentially introduce aspect ratio 
distortion, and the consideration of system accuracy is not 
addressed. 

The current state-of-the-art in FPGA-based breast cancer 
classification indicates a prevalent trend of resizing images to 
reduce computational complexity. However, various imaging 
modalities has been used for the early detection of breast 
cancer, including mammography, MRI, and ultrasound. 
Mammography, the most commonly used method, involves 
taking an X-ray of the breast. Nonetheless, mammograms 
possess limitations, particularly in sensitivity for young 
patients with denser breast tissue. In cases where 
abnormalities are detected on a screening mammogram, 
additional tests such as further mammograms or breast 
ultrasounds are often required to assess the likelihood of 
cancer. Ultrasound imaging is valuable for examining certain 
breast changes, particularly those that may be palpable but not 
visible on a mammogram. However, considering all above 
aspects,  the proposed system in this study utilizes ultrasound 
images without resizing, resulting in highly accurate, resource 
efficient and fast breast cancer classification. 

III. IMPLEMENTATION 

The implementation process of the proposed custom CNN 
architecture for breast cancer classification commenced with 
both software and hardware implementation, with the 
overarching goal of establishing a robust and reliable 
classification system capable of accurately detecting breast 
cancer. Fig. 1 illustrates the overall architecture of the 
proposed system. 

A. Software Implementation 

1. Dataset Preparation 

 The Breast Ultrasound Images Dataset (Dataset BUSI) 
[19] comprises a comprehensive collection of 780 images, 
each with an average resolution of 500 × 500 pixels. This 
dataset, collected in 2018, features breast ultrasound images 
from women aged between 25 and 75 years, offering a broad 
age range for analysis. It includes both the original ultrasound 
images and their corresponding ground truth annotations, 
facilitating accurate and detailed image analysis. The dataset 
is meticulously categorized into three distinct classes: normal, 
benign, and malignant, providing a valuable resource for 
developing and testing machine learning algorithms aimed at 
breast cancer detection and classification. The dataset has 
been partitioned into three sections: training, validation, and  

 
Fig. 1. Overall architecture of the proposed system. 
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TABLE I.  CONFIGURATION OF THE PROPOSED CNN ARCHITECTURE. 

Layer Type Activation Function No. of Filters Size/Stride Output 

0     500 × 500 

1 Convolution ReLU 8 3 × 3/1 498 × 498 × 8 

2 Convolution ReLU 8 3 × 3/1 496 × 496 × 8 

3 Maxpool   2 × 2/2 248 × 248 × 8 

4 Convolution ReLU 16 3 × 3/1 246 × 246 × 16 

5 Convolution ReLU 16 3 × 3/1 244 × 244 × 16 

6 Maxpool   2 × 2/2 122 × 122 × 16 

7 Convolution ReLU 16 3 × 3/1 120× 120 × 16 

8 Maxpool   2 × 2/2 60 × 60 × 16 

9 Convolution ReLU 32 3 × 3/1 58 × 58 × 32 

10 Convolution ReLU 32 3 × 3/1 56 × 56 × 32 

11 Maxpool   2 × 2/2 28 × 28 × 32 

12 Convolution ReLU 64 3 × 3/1 26 × 26 × 64 

13 Convolution ReLU 64 3 × 3/1 24 × 24 × 64 

14 Maxpool   2 × 2/2 12 × 12 × 64 

15 Convolution ReLU 64 3 × 3/1 10 × 10 × 64 

16 Maxpool   2 × 2/2 5 × 5 × 64 

17 Flatten    1 × 1600 

18 Fully Connected     

19 Fully Connected     

20 Fully Connected     

testing sets. For this study, 780 images from the BUSI 
dataset were utilized primarily for training purposes. Of 
these, 215 images were allocated to form the test set. This 
structured division ensures that the model can be 
effectively trained and subsequently validated on unseen 
data, thereby enhancing the robustness and reliability of the 
classification algorithm. 

2.   Configuration of the Custom CNN 

The layers and parameters of the custom CNN 
architecture were configured within TensorFlow models' 
experimental setup, utilizing the Sequential class to 
construct the model. After extensive investigation and 
experimentation with various custom CNN models, the 
proposed CNN architecture has demonstrated the highest 
accuracy. This CNN configuration comprises 10 
convolutional layers and 6 max pooling layers, followed by 
a single flattening layer. The architecture concludes with 
three densely connected layers, with the complete 
configuration and sequences detailed in Table 1.  

The convolutional operation employs a 3×3×3 filter 
with a stride of 1 and uses the rectified linear unit (ReLU) 
activation function. This is followed by a max pooling 
operation with a 2×2 filter and a stride of 2. The CNN 
operation starts with the original 500×500 image as input, 
and through successive applications of convolution and 
max pooling layers, it reduces the dimensions to a final 
shape of 5×5×64. These output dimensions of 5×5×64 are 
then flattened and passed through a dense layer. By 
performing the necessary bias-weight computations and 
applying an argmax function, the model ultimately 
classifies the images into one of three categories: normal, 
benign, or malignant. 

The model underwent training for 50 epochs, a duration 
deemed sufficient for achieving notable training 
performance. Following training, evaluation was 

conducted using test images from the BUSI dataset. Upon 
attaining satisfactory test results, the model underwent 
quantization, transitioning its precision from float32 to 
float16, a format more suitable for deployment on FPGA 
devices. Although some loss in accuracy occurred due to 
precision scaling, the model was retrained to mitigate this 
reduction. Subsequently, the quantized model underwent 
testing with the test dataset, and its accuracy was compared 
to that of the original model. The model hyperparameters 
were then converted from float16 to full integer format and 
saved as a model with a ‘.tflite’ extension. Finally, the 
hyperparameters of the custom CNN model were extracted 
for hardware implementation. 

B. Hardware Implemetation 

The implementation process utilized Xilinx Vivado 
2023.1 for hardware execution and subsequent evaluation 
on the Xilinx ZCU102 FPGA board. Each component 
within the CNN architecture, spanning convolutional 
layers, max pooling layers, flattening layers, and fully 
connected layers, was meticulously crafted to mirror the 
configuration set within the TensorFlow model. This 
custom architecture was strategically designed to enable 
concurrent computation across layers, ensuring efficient 
parallel processing while maintaining real-time 
responsiveness to incoming image data. All 
hyperparameters, including filters and weights derived from 
the trained model, were meticulously organized into arrays 
for each respective layer. Upon receiving sufficient input 
data, these layers executed convolution operations 
simultaneously, augmented by the ReLU activation 
function. However, the pooling layer, devoid of any 
trainable parameters, was individually configured based on 
its position within the architecture. Likewise, the flatten 
layer was engineered to serialize data, while the fully 
connected layers were tailored to align with the model 
specifications. Following meticulous design, configuration,  
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Fig. 2. Hardware implementation of the proposed CNN architecture in Vivado. 

and validation of all architectural components, they were 
seamlessly integrated according to the prescribed model, 
with interconnections established among them.  

 Subsequently, the custom CNN IP was encapsulated to 
seamlessly interface with image data through AXI and 
DMA interfaces. The holistic design was synthesized and  
realized using the Vivado design suite, culminating in the 
generation of a bitstream file deployed to the FPGA board. 
Figure 2 illustrates the custom CNN architecture in the 
Vivado IDE. 

IV. RESULT AND DISCUSSION 

A. Evaluation of the Proposed CNN Architecture 

 The proposed CNN architecture underwent a thorough 
evaluation encompassing both software and hardware 
domains. Following an extensive training process spanning 
50 epochs, meticulous analysis was conducted to scrutinize 
various performance metrics, including accuracy and loss. 
This multifaceted evaluation aimed to ascertain the efficacy 
and robustness of the trained model across diverse datasets 
and under varying conditions. By scrutinizing the model's 
performance over multiple epochs, insights were gleaned 
into its learning dynamics, convergence behavior, and 
potential areas for optimization. Additionally, this rigorous  

 
Fig. 3. Accuracy curve of the proposed system. 

evaluation process provided valuable insights into the 
model's generalization capabilities and its suitability for 
real-world deployment scenarios. Through this 
comprehensive assessment, the effectiveness and reliability 
of the proposed CNN architecture were rigorously 
validated, laying the foundation for its potential application 
in real-world breast cancer detection systems. 

 Figures 2 and 3 represent the accuracy and loss curves 
of the proposed CNN architecture, respectively. 
Examination of these graphs reveals a consistent decrease 
of training losses as the epoch count advances during the 
training process. Additionally, the accuracy steadily 
improves with higher epoch counts for both the training and 
validation datasets. Notably, the accuracy reaches 0.9976 at 
the 50th epoch, signifying successful training and high 
performance of the CNN model. 

 For further evaluation, a confusion matrix has been 
constructed using 215 images drawn from the test dataset, 
encompassing three output classes (Normal, Benign, and 
Malignant). Fig. 5 illustrates this confusion matrix, where 
the horizontal axis delineates predicted classes and the 
vertical axis denotes actual classes of input images. 
Examination of the confusion matrix reveals that for both 
the Normal and Benign classes, all 55 and 68 images were  

 
Fig. 4. Loss curve of the proposed system. 
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Fig. 5. Confusion matrix of the proposed system. 

correctly classified. In the Malignant class, out of the 92 
tested images, 91 was accurately classified while 1 was 
misclassified into the Normal class. This high level of 
accuracy across the classes underscores the robustness of 
the proposed custom CNN model in distinguishing 
between different breast cancer.  

      The hardware evaluation process entailed selecting few 
random image from each of the three classes and 
conducting comparisons after simulating these images. The 
simulation was performed using a meticulously designed 
test bench, which yielded results consistent with those 
obtained from the software implementation. Table 2 
represents a concise summary of the simulation results for 
the proposed CNN architecture, highlighting key metrics 
such as accuracy, resource utilization, power consumption, 
and throughput. The proposed CNN architecture achieves 
an impressive throughput of 4949 FPS when processing 
input images of size 500×500 pixels, operating at a clock 
speed of 250MHz. Additionally, the power consumption of 
the proposed system was meticulously assessed using the 
Xilinx Power Estimator (XPE) and runtime measurement, 
yielding a value of 3.6 Watts. 

B. Comparison with other Related Works 

 To assess the performance disparity between the 
architecture described in this paper and other state-of-the-
art architectures, a comparative analysis was conducted by 
comparing the results of the proposed system with those of 
other pertinent studies reported in recent literature. This 
evaluation aimed to gauge the effectiveness of the system 
architecture delineated in this research. Table 3 presents the 
outcomes of breast cancer classification achieved by 
various systems, along with the results of the proposed CNN 

TABLE II.  SUMMURY OF THE SIMULATION RESULTS. 

Criteria Output 

Image Size 500 × 500 

NN Model Custom CNN 

Clock (MHz) 125 

LUT 41325 

BRAM 1 

DSP 81 

Precision 16 bit 

Accuracy (%) 99.76 

Latency (ms) 202 

Throughput (FPS) 4949 

Power consumption (W) 3.5 

 

architecture. Table 3 clearly indicates the exceptional 
performance of the proposed CNN architecture, boasting 
the highest accuracy of 99.76% and the highest throughput 
among the compared state-of-the-art systems. Notably, the 
study by Guptha et al. [17] stands out for its minimal power 
consumption. It's noteworthy that since the proposed CNN 
architecture does not resize the input image, it requires 
slightly higher resources, resulting in 6X higher power 
consumption compared to the state-of-the-art system. 

 Despite the higher power consumption, the remarkable 
accuracy and throughput achieved by the proposed CNN 
architecture highlight its effectiveness in breast cancer 
classification tasks. This suggests that the marginal increase 
in power consumption may be a justifiable trade-off 
considering the substantial gains in classification 
performance. Ultimately, these findings underscore the 
importance of considering multiple performance metrics, 
such as accuracy, throughput, and power consumption, to 
make informed decisions regarding the design and 
deployment of CNN architectures for medical imaging 
applications. 

V. CONCLUSION AND FUTURE WORK 

 This paper delves into the exploration of designing, 
implementing, and evaluating a tailored CNN architecture 
optimized for FPGA platforms, with a primary objective of 
breast cancer classification. The developed system 
demonstrates substantial advancements in breast cancer 
image classification compared to existing works in the field, 
showcasing commendable attributes such as resource 
efficiency, accuracy, and throughput. This bespoke CNN 
architecture stands as a notable engineering feat in the realm 
of neural networks. 

TABLE III.  PERFORMANCE EVALUATION OF THE PROPOSED SYSTEM. 

Author / Criteria 
Guptha et al. 

[17] 
Saeed et al. 

[11] 
Maria et al. 

[18] 
Kayalvizhi et 

al. [14] 
Laxmisagar et 

al. [12] 
This Paper 

Year 2023 2023 2023 2023 2023 2024 

NN Model CNN CNN CNN Custom CNN SVM Custom CNN 

Hardware Virtex 7 ZCU 104 Artix 7  PYNQ-Z2  KC705 ZCU 102 

Accuracy (%) 96.89 - 98.2 99.38 91.08 99.76 

Throughput (FPS) - 2.4 91 75 - 4949 

Power Consumption (W) 0.6 11.65 1.9 3 1.17 3.5 
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 Future investigations could pivot towards augmenting 
the proposed system by integrating additional cancer 
classifications, thereby expanding its capabilities and 
applicability in real-time image classification systems 
within the biomedical domain. Such endeavors would not 
only enhance the system's versatility but also contribute to 
the ongoing evolution and refinement of AI-powered 
diagnostic tools in the medical field. 
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